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Abstract.

A mathematical analysis is undertaken of a Schnakenberg reaction-diffusion system in 1D with a spatial gradient governing
the active reaction. This system has previously been proposed as a model of the initiation of hairs from the root epidermis
Arabidopsis, a key cellular-level morphogenesis problem. This process involves the dynamics of the small G-proteins ROPs
which bind to form a single localized patch on the cell membrane, prompting cell wall softening and subsequent hair growth.
A numerical bifurcation analysis is presented as two key parameters, involving the cell length and the overall concentration of
the auxin catalyst, are varied. The results show hysteretic transitions from a boundary patch to a single interior patch, and to
multiple patches whose locations are carefully controlled by the auxin gradient. The results are confirmed by an asymptotic
analysis using semi-strong interaction theory, leading to closed form expressions for the patch locations and intensities. A close
agreement between the numerical bifurcation results and the asymptotic theory is found for biologically realistic parameter
values. Insight into the initiation of transition mechanisms is obtained through a linearized stability analysis based on a
non-local eigenvalue problem. The results provide further explanation of the recent agreement found between the model and
biological data for both wild-type and mutant hair cells.

1. Introduction. The study of root hairs (RH)s is agriculturally important for understanding and

optimisation of both nutrient uptake and anchorage. In addition, the formation and growth of a root hair

represents an important problem in single-cell morphogenesis, not least because root hairs are particularly

amenable to scientific study due the ease with which they can be imaged; see [43] and references therein.

For the model plant Arabidopsis there is a wealth of experimental data concerning each step of root hair

formation: differentiation of the root epidermis into hair and non-hair cells, see e.g. [44]; the initiation

and growth of a single RH from wild-type hair cells; and the behaviour of a wide variety of mutants that

generate deformed or multiple hairs per cell, or no hairs at all (see [24, 26]).

This paper concerns the biochemical process by which the process of RH formation is initiated within

an Arabidopsis RH cell. As depicted in Fig. 1.1(b) the first visible sign that this process has begun is the

formation of a patch of small G-proteins known collectively as ROPs (Rhos of plants) at the location on

the cell membrane at which the hair will form. Just prior to cell wall bulging to form a root-hair stub,

this patch is observed to be 10–20% of the cell length away from the apical (root tip) end of the cell. The

process by which a patch of active ROP spontaneously forms in its wild-type position, from where a root

hair forms, appears to take place within a timescale of minutes, see e.g. [24]. It appears to be triggered

within the growing root as the RH cell reaches a combination of a critical length and a critical overall auxin

concentration.

The key feature of a model concerning such an initiation process, as proposed by Payne and Grier-

son [41], is that the activation step is postulated to be dependent on the concentration of the plant hormone

auxin. Although auxin is too small to be imaged on its own, by using the auxin flow model introduced by

Kramer [28], Jones et al. [24] were able to surmise that there is a decreasing gradient of auxin from the

apical end of each RH cell.

Assuming that such a gradient mediates the autocatalytic activation of ROPs, simulations by Payne

and Grierson [41] showed that the active-ROP variable tends to form patch-like states towards the apical

end, as in Fig. 1.1(b). Moreover, various patch states can be found that show a close qualitative match with

observations on the location, width and distribution of multiple hair cells on a variety of mutants. There

it is also shown that the effect of too much auxin in young cells is to produce mutants that spontaneously
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Fig. 1.1: (a) Image of root hair cells of Arabidopsis. (b) An apical of surface bound ROP imaged using GFP in
wild-type just prior to cell wall bulging. (c) Mutants affected by auxin. On the top panel, the RH site
is farther away from the apical end (indicated by the left arrow cap); on the bottom panel, multiple RH
locations are initiated simultaneously (indicated by arrows). Figures reproduced from [41]. (d) Mutant
which overexpresses the gene ROP2; from right to left, numbers indicate successive snapshots at different
times. RH initiation sites are indicated by the arrows. The bar represents 75µm. Figure reproduced
from [25].

form two or more hairs, in keeping with results in the experimental literature. Other mutant phenotypes

which form hairs with different geometries could also be matched in the shape of the underlying ROP

patch. The purpose of this paper is to provide a detailed mathematical explanation of these simulation

results and to form further biological hypotheses on how the root hair initiation process occurs.

As we shall see, within a given model, asymptotic methods can lead to full parametrisation of quali-

tative features, such as patch width and instability threshold, that should then enable new experimental

hypotheses to be formed and tested. As an example of this, the analysis in §5 below throws light on the

observations by Jones and Smirnoff [25] that in multiple root-hair mutants there appears to be a correlation

between the proximity to the apical end of the cell and the progress of each hair’s tip growth.

The system we study is a generalization of the Schnakenberg model [45], which is one of the most

widely studied models of Turing-like pattern formation. Beyond initial Turing instabilities, the model is

known to present a rich variety of self-organising dissipative structures, whose dynamics give insights on

biological pattern formation from sub-cellular to ecological lengthscales; see, for example, [31] for a review.

There is also an extensive literature on the formation of spatially localized structures in the Schnack-

enberg model. For instance, existence and asymmetry of spike-like structures [50], stability of symmetric

N -spiked steady-states [23], dynamics and self-replication of spot-like structures in 2D [27] have been

analysed. Ehrt et al. [12, 42] analyse first- and second-order interface interactions providing methods to
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describe the location and dynamics of spikes in such a system. Also, the model plays a central role in

observation of such structures in chemical reactors see e.g. [11, 48]. Related reaction-diffusion systems such

as the Gray–Scott and Gierer–Meinhardt models have also been thoroughly analyzed, see [5, 8, 9, 22, 51]

and the references therein. There, in addition to the analysis of the existence and the dynamics of localized

solutions, the stability of localized structures has been investigated by analyzing the spectrum of certain

non-local eigenvalue eigenvalue problems. These previous studies have focussed on the case where there is

no imposed spatial gradient in either the nonlinear kinetics or diffusivities.

Pattern formation in the presence of spatial inhomogeneity in either the reaction kinetics or the diffu-

sivities is less well understood than for the spatially homogeneous case. Preliminary results on the effect

of inhomogenities on the Turing instabilities in the Schnakenberg model were considered by Maini and

co-workers [1, 30]. Glimm et al. [18, 19] analyse reaction-diffusion systems where certain kinetic terms are

assumed to be affected by a linear chemical gradient. Page et al. [38, 39] explore self-organised spatial pat-

terns in the Gierer–Meinhardt system outside the classical Turing instability regime, allowing the kinetic

coefficients to vary either in discrete jumps or via periodic modulation. Similarly, Ward et al. [49] analyze

a reduced Gierer–Meinhardt system with inhomogeneous linear kinetic terms using matched asymptotics.

In addition, far from a Turing perspective, Matties and Wayne [32] prove the existence of stationary and

pinned waves in a more general context, by using averaging and homogenization techniques.

In the literature there has been a particular focus on analyzing pinning phenomena, in which localized

traveling-wave type solutions get frozen at specific spatial locations as a result of spatial inhomogeneities

in the medium. For instance, Heijster et al. [47] analyze the effect of a jump-type, externally imposed,

heterogeneity on both transition-layer and pulse-type solutions in a generalised FitzHugh–Nagumo system.

Nishiura and his collaborators [37, 54] have performed thorough analyses of the effect of such inhomogenities

in a three-component reaction-diffusion system and the Gray–Scott system. The focus in these studies is

to characterize whether traveling fronts either penetrate through, are reflected from, or are pinned by the

inhomogeneity. In Wei and Winter [53] the influence of a discontinuous inhibitor diffusion coefficient on

the existence and stability of spikes in a Gierer–Meindhardt system is investigated. We are not aware of

any study of the stability and dynamics of localized spikes when the spatial inhomogeneity arises in the

nonlinear terms of the reaction kinetics.

In comparison with these previous works, the novel mathematical feature of the present paper is that

a parameter gradient multiplies the nonlinear terms in the kinetics of the reaction-diffusion system. We

analyze the role that this gradient has on the existence, stability, dynamics, and bifurcation structure, of

localized spikes for this system.

This outline of this paper is as follows. In §2, we explain a few features of the biology and derive the

fundamental system to be studied. We also provide some preliminary analysis and numerical simulation

data that point to the existence of localized spike solutions that represent patches of high concentrations

of active ROPs. In §3 numerical bifurcation results are given to identify parameter regions where different

forms of solution profile exist, and to exhibit the types of instability that cause transitions between them.

In §4 a matched asymptotic expansion analysis, in the spirit of Ward and Wei [50], is given to provide

analytical predictions of the location and width of single- and multiple-patch states. Then, in §5, we explore

thoroughly the competition instability of multiple spikes in an O(1) time-scale regime, in order to derive

a critical threshold of the parameters beyond which certain spike-type solutions become unstable. The
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asymptotic results for the dynamics and stability thresholds are found to be in close agreement with full

numerical results. Finally, §6 contains concluding remarks, discusses biological implications for the work

and makes suggestions for future work.

2. Mathematical Model. Rho-family small GTPases are a group of proteins whose main role seems

to be that of transmitting chemical signals in order to effect a number of changes inside the cell. Working

as molecular “connectors”, these proteins shift between active and inactive states. Plants possess a single

subfamily of Rho GTPases known as Rho of Plants (ROP) which control a wide variety of cellular processes,

see [4] and references within. These biochemical compounds contribute strongly to cellular level processes

such as morphogenesis, movement, wound healing, division and, of particular interest here, cell polarity

generation [14, 24, 33, 36, 40]. In particular we are interested in the role of ROPs in forming patches that

produce local cell outgrowths.

In addition, plant hormones known as auxins are thought to play a crucial role in almost all aspects

of a plant’s life. Auxins stimulate growth, and regulate fruit setting, budding, side branching, and the

formation of delicate flower parts among many other morphogenic tissue-level responses. In a sense, RH

outgrowth is one of the simplest and easiest studied effects that is stimulated by auxin [24, 33].

Root hair cells are intercalated with cells that do not develop RHs. Specification from a recently-

formed epidermal cell into a RH cell or non-RH cell is a topic which has warranted particular attention [44]

as it leads to a better understanding of cell-type patterning generally in plants. As is stated in [21, pp. 3],

patterning information is provided at an early stage in epidermis development, immature epidermal cells

destined to become RH cells are distinguished from their counter part, non-RH cells, prior to hair outgrowth.

The differentiating RHs cells present a greater cell division rate, smaller length, greater cytoplasmic density,

lower vacuolation rate and distinguishable cell wall epitopes; see also [2, 10, 16, 17, 26].

Arabidopsis RHs normally develop at 1µm/min, and stop growing when a critical length is reached. At

this point, the cytoplasm at the tip spreads out and the vacuole expands. Also, it has been experimentally

observed that ROPs are involved in branching and deformation of tips (see e.g. [26]). Genetic analysis of

these processes has identified specific proteins that are strongly engaged in mechanisms of RH initiation

and tip growth (see [15, 21] and the references therein). In addition, The Arabidopsis Information Resource

is a database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana [46].

There data for many genes that particularly affect RHs are given. However, our focus will be to consider

a selection of them that illustrate features of ROP interactions pertinent to initiation and ROP patch

location dynamics.

2.1. ROP Kinetics. Each ROP protein comes in two states: activated and inactivated. Inactive

ROP may be either bound to the cell membrane or in the cytoplasm. In our model we shall not model

the binding mechanism per se but shall differentiate only between the active form which can only diffuse

within the confines of the cell membrane, and the inactive form, the majority of which is free to diffuse

in the 2D cytoplasm. We will approximate the long-thin RH cell by a 1D domain, of length L, and shall

distinguish between membrane and cytoplasm only through separate diffusion constants. That is we model

a mathematical domain (z, T ) ∈ [0, L]×R+∪{0} and let Ũ(z, T ) represent the concentration of bound/active

and Ṽ (z, T ) the unbound/inactive ROP. Our model also reflects the fact that the kinetic processes occur

considerably faster than the changes to cell length and auxin concentration levels. Therefore, we shall
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Fig. 2.1: Sketch of the binding process where autocatalytic activation and catalysis effect by auxin are coloured in
purple.

assume that the latter are effective bifurcation parameters that vary quasi-statically.

The transition between inactive and active forms is known to be controlled by intracellular signalling

through so-called ROP-regulators: guanine nucleotide exchange factors (GEF) that catalyse ROP acti-

vation and GTPase-activating protein (GAP) that deactivate ROPs. We therefore model the switching

fluctuation between both densities as depicted in Fig. 2.1. That is, the active Rho state is deactivated at

a rate κGAP , and equivalently inactive Rhos are activated at rate κGEF . These rates depend upon the

presence of GEFs or GAPs respectively. Fig. 2.1 shows the entire process schematically; the auxin gradient

is represented by shading of the cytoplasm, where the arrow indicates decreasing concentration.

It is widely postulated in models of similar Rho-proteins in yeast and mammals, that the GEF activation

step involves positive feedback (autocatalysis) whereas the GEF step is thought to be passive; see for

example [34].

Payne and Grierson [41] characterized a transition between active and inactive state of ROPs via GEFs

and GAPs by taking κGEF (Ũ) ≡ κ1 + κ2Ũ
2 and allowing only one species of ROP to be modelled. This

simplification can be justified as follows. In plants, although there are several different kinds of ROP, their

activation is not thought to involve cross talk. Also, by including a constant production rate of the inactive

ROP and a constant probability of recycling or further processing of active ROP, there is no need for a

cross-talk or Hill function kinetics explicit saturation term. In fact, as shown in Proposition 2.2 below, the

total amount of active ROP is a conserved quantity in any steady solution.

Moreover, according to Jones et al. [24] and Grieneisen et al. [20], there is experimental evidence

which suggests that a spatially decaying (as z increases) gradient of auxin, as postulated by Payne and

Grierson, modulates the autocatalytic step. That is, we suppose then the constant κ2 is spatially dependent:

κ2 = k20α(z/L). Here k20 measures an overall concentration of auxin and α(z/L) is a smooth function

that represents the spatial distribution of auxin, normalised so that

α(0) = 1, α′(x) < 0, for all x ∈ (0, 1).

In all the computations that follow, we take the function α(x) = e−νx, ν = 1.5, which models the steady
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state concentration of a leaky diffusion process (see [41]). However, simulation results were found to be

insensitive to different piecewise-smooth non-increasing functional forms of α, for the same α(0)− α(1).

In contrast, we suppose that κ1 = k1 a constant. All other processes are supposed to follow the simple

law of mass action, with the GEF-induced deactivation/unbinding rate given by a constant κGAP = c.

Furthermore, b is assumed to be the constant rate of production of inactive ROP and r the rate at which

active ROP is recycled or used up to produce other complexes, including those that go on to produce cell

wall softening.

2.2. Fundamental Model. Under the above assumptions, and by using the law of mass action

allied to Fick’s law of diffusion in a standard way, we obtain the reaction-diffusion system

Bound-active ROP:
∂Ũ

∂T
= D1

∂2Ũ

∂z2
+ k20α(z/L)Ũ2Ṽ − (c+ r)Ũ + k1Ṽ , (2.1a)

Unbound-inactive ROP:
∂Ṽ

∂T
= D2

∂2Ṽ

∂z2
− k20α(z/L)Ũ2Ṽ + cŨ − k1Ṽ + b . (2.1b)

We impose the no-flux boundary conditions Ũz = 0, Ṽz = 0 at z = 0, L, which supposes that, unlike the

small molecule auxin, the large ROPs do not diffuse through the cell wall.

The Schnakenberg system can be recovered from (2.1) by setting k1 and c to zero, adding a constant

production term to Ũ -equation, and taking α ≡ 1; this transformation can be seen as an homotopy between

both systems. Furthermore, both systems are derived from simple reactions where an autocatalytic process

is present. Both models can effectively be thought of as showing activator-substrate behaviour. That is,

as we shall see in our later numerical and analytical results, in activation regions the activator aggregates

so that the substrate is consumed quickly, which results in substrate valleys occuring at activator peaks.

As already stated, we presume that bound ROPs diffuse more slowly, so that the diffusion coefficients

D1 and D2 are assumed to satisfy D1 � D2. Payne and Grierson [41] postulated the following plausible

parameter values:

D1 = 0.1
µm2

s
, D2 = 10

µm2

s
, b = 0.01

con

s
, r = 0.01

con

s
, (2.2)

c = 0.1
con

s
, k1 = 0.01

con

s
, L = 50µm, k20 ∈ [0.01, 1],

which, with k20 = 0.1con2/s, were found to match well the time and length scales associated with RH

formation in wild type Arabidodpsis, where the fundamental units of space and time are µm and sec, and

concentrations are measured with respect to an arbitrary datum (con). In the original model (see [41])

the cell length L and auxin concentration k20 are known to be slowly transiently increasing during the

root hair initiation process. To simulate this Fig. 2.2 & 2.3 show the effect of such transient sweeps within

the cell. In this paper we shall consider the auxin concentration k20 and cell length L to be the primary

bifurcation parameters.

2.3. Initial Parameter Sweep. The computational results in [41], based on experimental recordings,

suggest that a single patch of high active ROP concentration occurs during a period of root development

when the length of the RH cell increases to about L = 50–60µm and the auxin concentration parameter k20

is in the range 0.1–0.2con2/s. To ease notation, we will not specify units from now on. Fig. 2.2 shows

spatio-temporal plots of solutions to (2.1), computed using XPPAut [13] with parameters held to their
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Fig. 2.2: Final profile and patch dynamics, with no variation of parameters, for (a) boundary patch, (b) an interior
patch, (c) double patch and (d) boundary and interior patch. U - and V -final profiles are plotted in blue
and red respectively (top panels in (a)–(d)), and U -spike solutions on heat bar scale. Parameter values as
in (2.2).

values in (2.2). We note four distinct types of steady state solution. These comprise, selecting L = 50

for specific k20 parameter values, a boundary patch (Fig. 2.2(a)), a single interior patch (Fig. 2.2(b)) and

multiple interior patch (Fig. 2.2(c)); in addition, a another kind of multiple-patch solution can also be

observed, a boundary and interior patch (Fig. 2.2(d)). Further numerical results (not shown) indicate that

for yet higher values of L and k20 n-patch states can be observed with a broad trend that n increases

with L or k20.

For each of these solution, by a “patch” we mean a region in which there is a localized spike in

concentration of active ROP Ũ , while the concentration of Ṽ varies globally across the domain, but with

a trough whenever Ũ has a peak.

The left-hand panels of Fig. 2.3 show what happens under the biologically more realistic mechanism

of gradual increase of both cell length and auxin concentration over the course of about 30 minutes, which

is the timescale under which root hairs are thought to emerge. For the upper panel (Fig. 2.3(a)), a single

interior patch emerges, as would occur in wild type. In Fig. 2.3(c), L and k20 are increased more rapidly

so that the single patch splits into two interior patches which would represent the behaviour of a mutant

that over expresses auxin.

An interesting phenomenon is seen in the right-hand panels of Fig. 2.3. If the auxin and cell length
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Fig. 2.3: Hysteresis for two different transition speeds varying growth patch region length and auxin acceleration
rate. The shift in the L and k20 parameters are plotted in green and purple, and the intensity of the U
field is plot on a heat scale.

variation is reversed, we see that the point of instability of the two patch or the one-patch state does not

occur at the same levels as the equivalent phenomenon under parameter increase. In other words there

is hysteresis in the formation of the patterned states. Also, the interior patch seems to endure longer, as

seen in Fig. 2.3(b), than multiple interior patch in transition, as shown in Fig. 2.3(d). This suggests that

effectively an interior patch tends to be more persistent than other states. This gives us an initial insight

on the biological robustness of the pattern formation mechanism; once a process of patch formation has

set in under increase of a parameter, it would not be undone by a momentary reduction of that parameter.

We shall study the bifurcations underlying this hysteresis in §3 below.

Note also from these results that there appear to be several asymptotic scales; there is a definite

length scale associated with the size of the active ROP patches, there is a timescale associated with slow

drift of patches and a more rapid timescale associated with formation or instability of the patches. These

observations give a clue to the form of multiple scale asymptotic analysis with which we can explain these

results. In that direction, we shall consider next an asymptotic rescaling of the model.

2.4. Asymptotic Rescaling and Parameter Identification. In order to analyze (2.1), it is helpful

to introduce a change of variables. First, we identify D1/(c + r) and D2/k1 as the effective diffusion
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Fig. 2.4: Schematic plot of the inner and outer solution for a steady-state solution. The active-component U has a
patch, whereas V has a global variation across the domain.

coefficients for Ũ and Ṽ , respectively. Hence we rescale via

Ṽ =
b

k1
V , Ũ =

(c+ r)k1
k20b

U . (2.3)

Then, upon defining nondimensional time and space variables via

t = (c+ r)T, x =
z

L

so that x ∈ [0, 1]. We introduce a small parameter ε by ε ≡
√
D1/L2(c+ r). As shall be seen below in

Proposition 2.2, we conclude that if U � 1 away from the patch, then U = O
(
ε−1
)

in the core of the

patch, and as a consequence V = O(ε) near a patch (see Fig. 2.4). This formal scaling argument motivates

the introduction of the new variables u, and v, defined by

U ≡ ε−1u , V ≡ εv .

In terms of these new variables, we obtain the rescaled equations

ut = ε2uxx + α(x)u2v − u+
ε2

τγ
v , (2.4a)

ετvt = D0vxx + 1− εv − ε−1
(
τγ
(
α(x)u2v − u

)
+ βγu

)
, (2.4b)

on 0 < x < 1 and t > 0, with ux = vx = 0 at x = 0, 1, and D0 ≡ εD which comes from balancing terms

in (2.4b).

Here, the dimensionless parameters are given by

ε2 ≡ D1

L2(c+ r)
, D ≡ D2

L2k1
, τ ≡ c+ r

k1
, β ≡ r

k1
, (2.5)

and the primary bifurcation parameter is

γ ≡ (c+ r)k21
k20b2

. (2.6)
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Original Re-scaled
D1 = 0.1 ε2 = 3.6× 10−4

D2 = 10 D = 0.4
L = 50
k1 = 0.01 τ = 11
b = 0.01 β = 1
c = 0.1
r = 0.01

k20 = 0.01 . . . 1.0 γ = 11 . . . 0.11

(a) Parameter set (2.2)

Original Re-scaled
D1 = 0.1 ε2 = 2.3× 10−5

D2 = 50 D = 0.5
L = 100
k1 = 0.01 τ = 44
b = 0.005 β = 4
c = 0.4
r = 0.04

k20 = 0.045 . . . 40 γ = 39.1 . . . 0.04

(b) Parameter set (2.7)

Table 2.1: The two parameter sets in the original and re-scaled variables.

Note that γ ∝ 1/k20 so that an increase of auxin corresponds to a decrease of γ. Similarly the parameter

D0 ∝ 1/L2 and so we can consider D0 to be a secondary bifurcation parameter with a decrease in D0

representing cell lengthening.

The form in (2.4) assumes that ε � 1 and that each of the other parameters are O(1) as ε −→ 0.

Table 2.1(a) shows the original parameter values (2.2) and equivalent re-scaled set of parameter values.

Note that the assumed asymptotic scaling is somewhat questionable; 1/ε ≈ 50 which is similar in magnitude

to τ and γ which are assumed to be O(1). Nevertheless, in what follows we shall find that the asymptotic

analysis produces a more than acceptable match with the numerical results.

In order to categorically demonstrate the validity of the results in the asymptotic limit ε→ 0, we shall

also consider a second set of parameter values

D1 = 0.1
µm2

s
, D2 = 50

µm2

s
, b = 0.005

con

s
, r = 0.04

con

s
, (2.7)

c = 0.4
con

s
, k1 = 0.01

con

s
, L = 100µm, k20 ∈ [0.045, 40],

which are a small adjustment from those in (2.2) and well within the bounds of biological plausibility, but

for which the asymptotic description is more clearly valid, see the Table 2.1(b). For this second set of

parameters we shall find a very close agreement between the asymptotic theory and numerics.

2.5. Preliminary Results. We are interested in steady state solutions to (2.4). At first sight, it

would seem that the model (2.4) with ε� 1 is well set up for pattern formation through Turing bifurcations.

Indeed, a wide range of biological pattern formation problems have been studied from the viewpoint of

Turing instability analysis around a spatially homogeneous steady-state [29, 35].

To begin such an analysis, consider the homogeneous problem α(x) ≡ 1. For either of the parameter

sets (2.2) or (2.7), as the auxin concentration k20 is increased from zero, or equivalently the parameter γ

is decreased to zero, it is straightforward to see that there is a series of Turing bifurcations (pitchforks) to

patterns of different wavelengths. However, a lengthy but elementary calculation shows:

Proposition 2.1. The homogeneous steady state

U =
1

βγ
, V =

βτγ

β2γ + τ

of (2.4) with α ≡ 1 under either parameter set (2.2) or (2.7) is stable for γ sufficiently large. As γ is

10



decreased to zero there are an infinite number of Turing bifurcations, of increasing wavenumber, the first

few of which are subcritical.

Therefore all small-amplitude periodic patterns are unstable. Moreover, straightforward numerical

continuation reveals that all these bifurcating branches undergo a further fold bifurcation. After the fold

the pattern takes on a spike-like form, constisting of a number of large peaks of U .

What shall interest us in the next section is to numerically find equivalent steady-state solutions for

the inhomogeneous problem. In this case there is no trivial steady state to consider bifurcations from.

Nevertheless, we note the following conservation principle for steady state solutions of (2.4), which is

independent of the form of α(x).

Proposition 2.2. Any steady-state solution (U(x, t), V (x, t)) = (U0(x), V0(x)) of the system (2.4) is such

that

Ū ≡
1∫

0

U0 dx =
1

βγ
. (2.8)

Proof. To derive this result, we set Ut = 0 and Vt = 0 in (2.4), and integrate (2.4a) over the domain

and use the Neumann boundary conditions to obtain the equation
∫ 1

0

[
α(x)U2

0V0 − U0

]
dx = − 1

τγ

∫ 1

0
V0 dx.

Then, upon using this identity in the expression that results from integrating (2.4b) over the domain we

readily obtain (2.8). �

This result shows that the total amount of the bound ROP in the patch region depends only upon the

constant production and removal rates of ROP, that is, in the unscaled variables Ū = b/r. This observation

means that the active ROP concentration remains constant no matter how many patches it forms. From a

mathematical viewpoint, as has seen above, Proposition 2.2 led to a proper re-scaling for a multiple-scale

asymptotic analysis.

3. Numerical Bifurcation Analysis. We next turn to numerical bifurcation analysis to compute

steady state solutions to (2.4). In order to provide comparison with other studies that show biological

data, all results will be presented in the unscaled system (2.1) using parameter set (2.2). The principal

bifurcation parameters will be k20, representing the overall concentration of auxin, and L the cell length.

We are interested in identifying and analysing the bifurcations that cause the transitions already observed

under slow sweeps in these parameters.

The numerical results have been produced using AUTO [7] applied to the steady-state problem which

is a two-point boundary-value problem (BVP). We have augmented this analysis with computations of the

temporal stability of solutions, using direct numerical simulation in XPP (cf. [13]) and computation of the

spectrum of the discretised steady-states using MATLAB. To perform the spectral computation we used a

standard three-point stencil on a uniform grid to discretize the Laplacian; we therefore obtain the operator

LW ≡ D + F′ (W0), where D ≡ diag
(
ε2∂xx, D∂xx

)
, and F′ (W0) is the Jacobian matrix evaluated at

W0 = (U0, V0), a steady-state solution to the BVP. Then we compute the eigenvalues of the discretized

operator. Stable solutions have all eigenvalues in the left-half of the complex plane.

Initial solutions for the BVP were found by computing branches that bifurcate from the trivial solution

of the homogeneous problem with α ≡ 1 and then using a homotopy method to continue these into solutions

of the inhomogeneous problem.

11
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Fig. 3.1: Bifurcation diagram varying k20: branches of boundary patch, single-interior patch, boundary-and-interior
patch and two-interior patch; stable solutions are shown as solid lines, unstable solutions as dashed lines
and points instability points by filled circles. Parameter set as given in Table 2.1(a).

Fig. 3.1 shows a bifurcation diagram for which the L2-norm measure. Interior single patch, boundary

patch, boundary and interior patch and two interior patch branches are identified. We augment this analysis

with the results of stability computations from which we identify stable solutions. One clear feature in

the bifurcation structure of these solutions is that a large number of solution branches appear to lie on a

single connected curve in the bifurcation diagram (reminiscent of so-called homoclinic snaking [3, 6] on

a finite domain). Broadly speaking, as k20 increases the number of active-ROP patches in the solution

increases. Most solutions for large k20 are unstable. However, there appears to be at least one stable branch

for each k20-value and regions of stability tend to overlap. All instabilities were found to occur via fold

bifurcations, although we do note a slight discrepancy between the steady-state analysis and the stability

computations on the location of the initial instability for very low k20-values. There is the suggestion from

the computations that there may be a Hopf bifurcation very close to the fold, which we shall not explore

in detail further here.

Fig. 3.2(a) shows the position of the global U -maximum of the single interior spike as a function of

the bifurcation parameter for both parameter sets in Table 2.1(a) and Table 2.1(b). We note that patch

is localized nearer to the boundary for low values of k20. This indicates that the auxin actively controls

the position of the patch from which the root hair will grow. This will also be explored using asymptotic

analysis in §4. There we shall compare our theoretical results with the numerical ones presented in this

section. See in Fig. 3.2(b) a comparison between parameter sets in Table 2.1(a) and Table 2.1(b) for the

boundary-patch and single-interior-patch branches.

It is useful to augment these results with two-parameter continuation of the fold curves which give the

stability boundaries of the main stable solutions we have identified, the boundary patch, interior patch,

boundary and interior patch and two interior patch patterns. Fig. 3.3 shows such a diagram under variation

of two parameters that are thought biologically to control the process – namely auxin concentration k20

12
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Fig. 3.2: (a) The simplest parts of the bifurcation diagram in which the solution measure is the x-location of
the global maximum of U . Dots represent fold points. (b) Comparison of the bifurcation diagram for
the boundary-patch and single-interior-patch branches. Parameters values as given in Table 2.1(a) (top
panels) and Table 2.1(b) (bottom panels).

and cell length L. It reveals that there are windows where more than one kind of stable solutions can

co-exist, this is because branches overlap in a sort of creation-annihilation cascade. This organisation

explains the hysteretic transitions already seen in Fig. 2.3. The parameter sweeps in Figs. 2.3(a)–2.3(b)

and Figs. 2.3(c)–2.3(d) are represented by lines labeled as (A) and (B), respectively.

Note how the bifurcation diagram explains the transitions observed in both simulations. For the first

case, in Fig. 2.3(a) the boundary patch onset curve appears at very small k20 values, causing an immediate

bifurcation from no pattern to a boundary patch. The next transition, upon increase of auxin and length

occurs upon crossing the boundary patch annihilation curve, yielding a bifurcation in which the patch

jumps into the interior. Notice that the red sweep stops just before single interior annihilation curve

meaning that the interior patch state remains. If the parameter sweep is reversed, as in Fig. 2.3(b) note

that the interior patch state remains for longer, until the onset curve of that state, which occurs at lower

auxin and length values than the annihilation of the boundary patch state.

For the second parameter sweep, the auxin and length increase to higher values and cross the anni-

hilation curve of the single interior patch. This causes a transition into a two interior patch region, see

Fig. 2.3(c). On the other hand, going backwards as in Fig. 2.3(d) implies transitions occur not at the

annihilation curves, but at the onset curves for each kind of pattern.

4. Asymptotic Analysis; Patch Location. Our numerical study in the previous section has sug-

gested that there should exist wave-pinned solutions in which localized patches, or spikes, of the active

component U occur in one or more locations. In order to study such spatial patterns, we will adapt the

methodology of Ward et al. [12, 22, 23, 42, 49, 50] to construct an asymptotic solution. The strategy

there is to find steady-state and quasi-steady-state solutions with localized patches such that for ε � 1

the active component is approximately constant except in the patch regions. The existence of a localized

solution is a consequence of a short-range activation process, where the inactive component V plays the
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Fig. 3.3: Length and auxin 2-parameter continuation of the fold points in Fig. 3.1. Onset (solid) and destruction
(dashed) curves are coloured according to each solution type. Transition sweeps shown in (A) Fig. 2.3(a)–
2.3(b) and (B) Fig. 2.3(c)–2.3(d). Other parameters are as in Table 2.1(a).

role of long-range substrate. The novelty in our analysis will be to determine how the spatial gradient α(x)

controls the locations of the patches.

4.1. Single Patch Solution. In this subsection we use the method of matched asymptotic expansions

to construct both a steady-state and a quasi-steady-state single patch solution. In this procedure, an

inner solution near the patch is constructed centred on an as yet undefined spatial position x0 that is

asymptotically matched to an outer solution defined away from an O(ε) distance from x0 (see Fig. 2.4).

In the inner region, we seek an asymptotic expansion for u(ξ) and v(ξ) as

u = u0 + εu1 + · · · , v = v0 + εv1 + · · · , ξ ≡ ε−1 (x− x0 (η)) . (4.1)

Here η = εpt is a slow time-scale where p is to be found. Upon substituting this expansion into (2.4), we

obtain on −∞ < ξ <∞ that

−εp−1 dx0
dη

uξ = uξξ + (α(x0) + εα′(x0)ξ + · · · )u2v − u+
ε2

τγ
v , (4.2a)

−εp+2τ
dx0
dη

vξ = D0vξξ − ετγ
(
(α(x0) + εα′(x0)ξ + · · · )u2v − u

)
− εβγu+ ε2 − ε3v . (4.2b)

A distinguished limit occurs in (4.2a) when p = 2, so that the slow time scale is η = ε2t. Then, to

leading-order we obtain from (4.2) that

u0ξξ + α(x0)v0u
2
0 − u0 = 0 , v0ξξ = 0 . (4.3)

At next order, we obtain on −∞ < ξ <∞ that u1 and v1 satisfy

u1ξξ − u1 + 2α(x0)v0u0u1 + (α(x0)v1 + α′(x0)ξv0)u20 = −dx0
dη

u0ξ , (4.4a)

D0

τγ
v1ξξ − α(x0)v0u

2
0 + u0 −

β

τ
u0 = 0 . (4.4b)

For (4.3) we impose that u0 → 0 and that v0 is bounded as |ξ| → ∞.
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4.1.1. Quasi-Steady-State Solution. We first construct a quasi-steady-state solution. To leading

order we obtain from the second equation in (4.3) that v0 is a constant, and so we define v0 by

v0 ≡ v0(ξ = 0) .

Then, from the first equation in (4.3) we obtain

u0 =
w

α(x0)v0
, w ≡ 3

2
sech2

(
ξ

2

)
, (4.5)

where w is the homoclinic of wξξ − w + w2 = 0 (see [23]).

Returning to the outer-scale system (2.4), the steady-state solutions of this problem satisfy

ε2uxx + α(x)u2v − u+
ε2

τγ
v = 0 , (4.6a)

D0vxx + 1− εv = ε−1
(
τγ
(
α(x)u2v − u

)
+ βγu

)
, (4.6b)

subject to ux = vx = 0 at x = 0, 1. In the outer region, where |x− x0| � O(ε), we obtain from (4.6a) that

u = ũ0 + o(1) and v = ṽ0 + o(1) where ũ0 = ε2ṽ0/τγ, which is obtained from making use of the matching

condition with (4.5) as ξ → ±∞. Therefore, from (4.6b), we obtain in the outer region |x − x0| � O(ε)

that ṽ0 satisfies

D0ṽ0xx = −1 + εṽ0 − ε−1τγ
(
ε2

τγ
ṽ0 +O

(
ε4
))

+
εβ

τ
ṽ0 ∼ −1 +O(ε) . (4.7)

To determine the appropriate jump condition for ṽ0 across x = x0, we use the leading-order inner

solutions v ∼ v0 and u ∼ w/α(x0)v0, as given by (4.5), to calculate the right-hand side of (4.6b) in the

sense of distributions. In this way, we obtain that

τγ

ε

(
α(x)u2v − u

)
+
β

ε
γu

−→

 τγ

α(x0)v0

∞∫
−∞

(
w2 − w

)
dξ +

βγ

α(x0)v0

∞∫
−∞

w dξ

 δ(x− x0) ,

where w = w(ξ) is given in (4.5). Upon calculating
∫∞
−∞ w2 dξ =

∫∞
−∞ w dξ = 6, the result above reduces to

ε−1τγ
(
α(x)u2v − u

)
+ ε−1βγu −→ 6βγ

α(x0)v0
δ(x− x0) . (4.8)

Therefore, we conclude from (4.6b), (4.7), and (4.8), that the leading-order outer approximation for v

satisfies

D0ṽ0xx = −1 +
6βγ

α (x0) v0
δ(x− x0) , 0 < x < 1 ; ṽ0x(0) = ṽ0x(1) = 0 . (4.9)

To determine v0 we integrate (4.9) over the domain, while using ṽ0x = 0 at x = 0, 1, to get

v0 =
6βγ

α(x0)
. (4.10)

Then, the solution to (4.9) with matching condition ṽ0(x0) = v0 is written as

ṽ0(x) = v0 +G(x;x0)−G(x0;x0) , (4.11)
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Fig. 4.1: Comparison between the asymptotic and numerics of the single interior spike quasi-steady-state solution
at the same location point, and parameter values given in Table 2.1(a) (top) and Table 2.1(b) (bottom).

where G(x;x0) is the unique Neumann Green’s function satisfying

D0Gxx = −1 + δ(x− x0) , 0 < x < 1 ; (4.12)

Gx(0;x0) = Gx(1;x0) = 0 ;

1∫
0

G(x;x0) dx = 0 ,

which is readily calculated analytically as

G (x;x0) =− 1

2D0
(x− x0)

2 − 1

3D0

(
(1− x0)

3
+ x30

)
+

+
1

D0

{
−x0 (x− x0) , 0 ≤ x ≤ x0,
(1− x0) (x− x0) , x0 < x ≤ 1 .

(4.13)

We summarise the results of the asymptotic construction of the quasi-steady-state solution in a formal

proposition as follows:

Proposition 4.1. Let ε� 1, D = O(ε−1) with D = D0/ε and γ = O(1). Then, a leading-order solution

for U corresponding to a one-patch quasi-steady-state solution of (2.4) is

U ∼ ε−1u ∼ ε−1

α(x0)v0
w
(
ε−1(x− x0)

)
, w ≡ 3

2
sech2

(
ξ

2

)
. (4.14)

The leading-order inner solution for V , valid for |x− x0| = O(ε) is

V ∼ εv0 , v0 ≡ 6βγ

α(x0)
, (4.15)

while the corresponding leading-order outer solution for V is

V ∼ εṽ0(x) , ṽ0(x) = v0 +G(x;x0)−G(x0;x0) . (4.16)

For the parameter values as given in Table 2.1, Fig. 4.1 shows a comparison between the quasi-steady-

state solution for U , as given in Proposition 4.1, and that obtained from full numerical solutions of (2.4).

Note that the parameter values in Table 2.1(b) have a smaller ε than those in Table 2.1(a), which allows

for a more favourable comparison between the asymptotic theory and full numerical results.
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4.1.2. Slow Patch Motion and the Steady-State Solution. Next, we extend the analysis to

derive an ODE for the slow-time evolution of the patch location x0, which has speed O
(
ε2
)
. To do so,

we substitute v0 = v0 and u0 = w/
[
α(x0)v0

]
into (4.4a), and write the resulting problem for u1 on

−∞ < ξ <∞ in terms of a self-adjoint operator L0 as

L0u1 = − v1

α(x0) [v0]
2w

2 − α′(x0)ξ

v0 [α(x0)]
2w

2 − wξ
α(x0)v0

dx0
dη

; (4.17)

L0φ ≡ φξξ + 2wφ− φ .

Here v1 satisfies (4.4b).

Since L0wξ = 0, the solvability condition for (4.17), as derived by first multiplying (4.17) by wξ and

then integrating the resulting expression by parts, is that

dx0
dη

∞∫
−∞

(wξ)
2
dξ = − 1

3v0

∞∫
−∞

v1
(
w3
)
ξ
dξ − α′(x0)

3α(x0)

∞∫
−∞

ξ
(
w3
)
ξ
dξ , (4.18)

where v0 is given in (4.15). Upon integrating the right-hand side of (4.18) by parts, and using the fact

that w(ξ) is even and that
∫∞
−∞ w3 dξ = 6

∫∞
−∞ (wξ)

2
dξ, we derive

dx0
dη

=
α(x0)

6βγ
[v1ξ(∞) + v1ξ(−∞)] +

2α′(x0)

α(x0)
. (4.19)

The final step in the derivation of the patch dynamics is to enforce the matching condition between the

inner and outer approximations for v that v1ξ(±∞) = ṽ0x(x±0 ). From D0 (v1ξ(∞)− v1ξ(−∞)) = 1, which

comes from integrating (4.4b) across the real line, and (4.11), this yields that v1ξ(±∞) = Gx(x±0 ;x0).

Consequently, (4.19) becomes

dx0
dη

=
α(x0)

6βγ

(
Gx(x+0 ;x0) +Gx(x−0 ;x0)

)
+

2α′(x0)

α(x0)
,

where Gx(x±0 ;x0) can be calculated from (4.13). We summarise our result for the slow dynamics of a single

patch in a formal proposition as follows:

Proposition 4.2. Let ε � 1, D = O(ε−1) with D = D0/ε and γ = O(1). Then, the slow dynamics of a

single-patch quasi-steady-state solution of (2.4) on the time-scale η = ε2t is given to leading order by

U ∼ ε−1u (η, x) , u (η, x) ∼ 3

2α (x0) v0
sech2

(
ε−1

2
(x− x0)

)
,

(4.20)

V ∼ εv (η, x) , v (η, x) ∼ v0 +G (x;x0)−G (x0;x0) , v0 =
6βγ

α (x0)
,

where the slow dynamics of the patch location x0(η) satisfies the ODE

dx0
dη

=
α(x0)

3βγD0

(
1

2
− x0

)
+

2α′(x0)

α(x0)
. (4.21)

A steady-state one-patch solution is located at a point x∗0 with 0 < x∗0 < 1, for which dx0/dη = 0.

Thus, from (4.21), any equilibrium point must be a root of G(x0), where G(x0) is defined by

G(x0) ≡ 1

6βγD0

(
1

2
− x0

)
+
α′(x0)

α(x0)2
.
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Fig. 4.2: Comparison between the asymptotic formula (4.23) and numerical continuation results for the equilibrium
patch location x∗0 while varying the parameter k20. The other parameter values as given in Table 2.1(a)
(top) and Table 2.1(b) (bottom). Solid dots represent fold bifurcation points of the numerical solutions.

For the case of interest where α(x0) > 0 for all x0 ∈ [0, 1] and α′(x0) < 0 for all x0 ∈ (0, 1), we conclude

that G(x0) < 0 on 1/2 ≤ x0 < 1. Therefore, any root to G(x0) = 0 must satisfy 0 < x0 < 1/2. Next, we

calculate that G(0) > 0 when

− α′(0)

[α(0)]
2 <

1

12βγD0
, (4.22a)

and, furthermore, G′(x0) < 0 when

α′′(x0)

[α(x0)]
2 − 2

[α′(x0)]
2

[α(x0)]
3 <

1

6βγD0
. (4.22b)

If (4.22) hold, then the slow dynamics (4.21) admits a unique stable equilibrium solution x∗0 in 0 < x∗0 < 1/2,

which corresponds to a unique and stable equilibrium patch location with respect to the slow dynamics.

We summarise this result in a formal proposition as follows:

Proposition 4.3. Suppose that α(x0) > 0 for all x0 ∈ [0, 1] and α′(x0) < 0 for all x0 ∈ (0, 1), and that

(4.22) hold. Then, the slow dynamics (4.21) has a unique stable equilibrium solution x∗0 in 0 < x∗0 < 1/2.

The resulting equilibrium solution is given asymptotically by (4.20) with x0 = x∗0.

For the choice of spatial gradient α(x0) = exp(−νx0) where ν > 0, which was used in our numerical

computations in §3, the condition (4.22b) is automatically satisfied, whereas (4.22a) holds when ν <

(12βγD0)
−1

. Under this constraint on ν, a patch will drift slowly on an O
(
ε−2
)

time-scale to be eventually

pinned to a location x∗0 on the half-interval 0 < x∗0 < 1/2.

In terms of the original parameters, the equilibrium point x∗0 can be then written implicitly as k20 =

k20 (x∗0) where

k20 (x∗0) =
6νrD2

√
D1(c+ r)

b2L2

(α (x∗0/L))
−1

L/2− x∗0
, 0 ≤ x0 ≤ L . (4.23)

Fig. 4.2 shows a comparison between full numerical results and our asymptotic results for the equilib-

rium location of a single patch as a function of k20 for the parameter values in Table 2.1. The full numerical
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result for the single-patch location is given by the solid curve, and our asymptotic result of (4.23) is given

by the dashed curve. This figure shows that there is a rather close agreement between the asymptotic and

numerical results provided that k20 is not too small nor too large because the asymptotic analysis is unable

to predict the numerically observed fold bifurcations. Note that this is consistent with the asymptotics

breaking down if x0 or (x0 − 1/2) become O(ε). It is clear that the asymptotics must break down as x0 → 0

because it is assumed that x0 is O(1). In the limit x0 → 1/2, we find that the first term in ODE (4.21)

becomes O(ε) and additional terms would need to be included to accurately predict a fold bifurcation.

4.2. Boundary Patch Solution. As can be noted from the bifurcation diagram in Fig. 3.1, the patch

pinned to the left-hand boundary at x = 0 is a quasi-steady solution, so we can also readily construct a

half-patch equilibrium solution. Since the details of the analysis are similar to that in §4.1.1 we only briefly

outline the calculation.

In the inner region near x = 0, we obtain to leading-order that

v ∼ v0b , u ∼ u0 =
1

α(0)v0b
w
(x
ε

)
, w(ξ) =

3

2
sech2

(
ξ

2

)
, (4.24)

where v0b is an unknown constant, representing the leading-order inner solution for v.

In the outer region, O(ε)� x ≤ 1, the leading-order outer solution ṽ0 for v satisfies

D0ṽ0xx = −1 , 0 < x < 1 ; ṽ0x(1) = 0 , ṽ0x(0+) =
3βγ

α(0)v0bD0
, (4.25)

with the matching condition that lim
x→0

ṽ0(x) = v0b . Upon integrating (4.25) over the domain, we obtain the

solvability condition that v0b = 3βγ/α(0). Then, the solution to (4.25) can be written as

ṽ0 = v0b +Gb(x)−Gb(0) , (4.26)

where Gb(x) is the Neumann Green’s function satisfying

D0Gbxx = −1 , 0 < x < 1 ; (4.27)

Gbx(1) = 0 , D0Gbx(0+) = 1 ;

1∫
0

Gb(x) dx = 0 ,

which has the explicit solution

Gb(x) = − 1

2D0
x2 +

x

D0
− 1

3D0
. (4.28)

We summarise the result in a formal proposition as follows:

Proposition 4.4. Let ε� 1, D = O(ε−1) with D = D0/ε and γ ∼ O(1). Then, a single boundary patch

solution to (2.4) centred on the boundary x = 0 is given asymptotically by

U ∼ 3ε−1

2α(0)v0b
sech2

( x
2ε

)
, V ∼ ε−1

(
v0b +

1

D0
x
(

1− x

2

))
, v0b =

3βγ

α(0)
. (4.29)

Fig. 4.3 shows a favourable comparison between full numerical results for U and the corresponding

asymptotic result for U given in Proposition 4.4.
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Fig. 4.3: Comparison between the numerical solution and the asymptotic quasi-steady-state solution, as derived in
Proposition 4.4, for parameter values in Table 2.1(a) (top) and Table 2.1(b) (bottom).

4.3. Multiple Patch Solution. A similar asymptotic approach can be used to characterise multiple

patch (or spike) solutions. We will consider the case of N+1 interior patches for which no patches are O(ε)

close to each other or to either boundary. We first construct a quasi-steady-state solution with patches

at locations x0, . . . , xN with xi < xj for i < j. We then derive an ODE system characterising the slow

dynamics of this quasi-steady-state multi-patch solution.

By proceeding as in §4.1.1, the leading-order outer solution ṽ0 for v satisfies

D0ṽ0xx = −1 +

N∑
i=0

niδ(x− xi) , 0 < x < 1 ; (4.30)

ṽ0x(0) = ṽ0x(1) = 0 ; ni ≡
6βγ

α (xi) vi
.

The N + 1 matching conditions are that ṽ0(xi) = vi, where vi is the leading-order approximation for v in

the inner region near the i-th patch. The solvability condition for (4.30) is that
∑N
i=0 ni = 1.

The solution to (4.30) can be written in terms of the Neumann Green’s function of (4.12) as

ṽ0(x) = v̄0 +

N∑
j=0

G (x;xj)nj , (4.31)

where v̄0 is an unknown constant. The N + 1 matching conditions ṽ0(xi) = vi, together with
∑N
i=0 ni = 1,

give a linear system of N + 2 equations for the unknowns vi for i = 0, . . . , N and v̄0 as

vi =

N∑
j=0

Gijnj + v̄0 , i = 0, . . . , N ;

N∑
j=0

nj = 1 ; Gij ≡ G (xi;xj) . (4.32)

The system (4.32) is written in matrix form by introducing the vectors

e ≡ (1, . . . , 1)T , n ≡ (n0, . . . , nN )T , n−1 ≡ (1/n0, . . . , 1/nN )T ,

where T denotes transpose. Then, (4.32) becomes

6βγBn−1 = Gn + v̄0e , nTe = 1 . (4.33)
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Here the symmetric Green’s matrix G and the diagonal matrix B are defined by

G ≡


G00 G01 · · · G0N

G10
. . . G1N

...
. . .

...
GN0 · · · GNN−1 GNN

 , B ≡


1/α(x0) 0 · · · 0

0
. . . 0

...
. . .

...
0 · · · 0 1/α(xN )

 .

The constant v̄0 is obtained by taking the dot product of the first equation in (4.33) with n and using

nTe = 1. This yields

v̄0 = 6βγ(N + 1)ᾱ−1 − nTGn ; ᾱ−1 ≡
1

N + 1

(
1

α(x0)
+ · · ·+ 1

α (xN )

)
. (4.34)

By using this expression for v̄0 in (4.33), we obtain a nonlinear algebraic system for n. The construction

of the quasi-equilibrium solution is summarized in a formal proposition as follows:

Proposition 4.5. Let ε � 1, D = O(ε−1) with D = D0/ε and γ = O(1), and consider an N + 1

interior patch quasi-steady state solution of (2.4) with patches centred at x0, . . . , xN . Then, a leading order

approximation for U and V is

U ∼ ε−1

6βγ

N∑
j=0

w
(
ε−1(x− xj)

)
nj , (4.35a)

V ∼ ε

6βγ(N + 1)ᾱ−1 − nTGn +

N∑
j=0

G (x;xj)nj

 , (4.35b)

where w(ξ) = 3
2 sech2 (ξ/2), G(x;xj) satisfies (4.12), and ᾱ−1 is defined in (4.34). Here n = (n0, . . . , nN )T

is the solution to the nonlinear algebraic system

6βγBn−1 = Gn + 6βγ(N + 1)ᾱ−1e−
(
nTGn

)
e . (4.36)

In terms of ni, the leading-order solution for V in the vicinity of the i-th patch is V i ∼ 6εβγ/α(xi)ni.

Next, to characterise the slow dynamics of the collection of patches, we introduce the slow time scale

η = ε2t and we let the patch locations evolve slowly in time as xj = xj(η) for j = 0, . . . , N . Upon

proceeding as in §4.1.2, we obtain for the j-th patch that

dxj
dη

=
α (xj)nj

6βγ

(
ṽ0x(x+j ) + ṽ0x(x−j )

)
+

2α′ (xj)

α (xj)
, j = 0, . . . , N . (4.37)

By using (4.31) for ṽ0, we can express this result in terms of the Green’s function. The slow dynamics is

summarised in the following formal proposition:

Proposition 4.6. Under the assumptions of Proposition 4.5, the slow dynamics on a time scale η = ε2t

of a collection of N + 1 interior patches satisfies the differential algebraic (DAE) system consisting of the

ODE’s

dxj
dη

=
α (xj)nj

3βγ

〈Gx〉j nj +

N∑
i6=j

Gx (xj ;xi)ni

+
2α′ (xj)

α (xj)
, j = 0, . . . , N , (4.38)

coupled to the nonlinear algebraic system (4.36). In (4.38), we have defined

〈Gx〉j ≡
1

2

(
Gx
(
x+j ;xj

)
+Gx

(
x−j ;xj

))
.
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It is analytically cumbersome to investigate in full generality the solvability of the DAE system for

finding quasi-steady solutions for N+1 patches and to analyse the slow dynamics and equilibrium positions

for such solutions. To illustrate our result we will only consider two-patch quasi-steady-state solutions.

First, consider the two-interior patch case with patches at x0 and x1 where 0 < x0 < x1 < 1. Then,

the nonlinear algebraic system (4.36) reduces to

6βγ

α (x0)n0
= G00n0 +G01n1 +

6βγ

α(x0)
+

6βγ

α(x1)
−
[
G00n

2
0 + 2G10n0n1 +G11n

2
1

]
,

6βγ

α(x1)n1
= G10n0 +G11n1 +

6βγ

α(x0)
+

6βγ

α(x1)
−
[
G00n

2
0 + 2G10n0n1 +G11n

2
1

]
,

where G01 = G10 by the reciprocity of the Green’s function. By subtracting these equations, and then

using n1 = 1− n0, we obtain a scalar nonlinear algebraic equation for n0 given by

6βγ

[
1

α (x0)n0
− 1

α (x1) (1− n0)

]
= (G00 − 2G01 +G11)n0 +G01 −G11 .

By using the explicit result for G(x;x0) given in (4.13), we calculate that

G01 −G11 =
1

2D0

(
x21 − x20

)
, G00 − 2G01 +G11 =

1

D0
(x0 − x1) .

Similarly, the two ODE’s in (4.38) for x0 and x1 can be written explicitly by using (4.13) to calculate

the required gradients of the Green’s function. We readily evaluate that

Gx(x1;x0) =
1

D0
(1− x1) , Gx(x0;x1) = − 1

D0
x0 , 〈Gx〉j =

1

D0

(
1

2
− xj

)
,

for j = 0, 1. Upon taking into account that n1 = 1 − n0 in (4.38), we obtain the following explicit DAE

system for the evolution of two interior patches:

Proposition 4.7. Under the conditions of Proposition 4.5, the slow dynamics of a quasi-steady-state

solution with two interior patches is characterised by the DAE system

dx0
dη

=
n0

3βγD0
α(x0)

(n0
2
− x0

)
+

2α′(x0)

α(x0)
, (4.39a)

dx1
dη

=
1− n0
3βγD0

α(x1)

(
1 + n0

2
− x1

)
+

2α′(x1)

α(x1)
, (4.39b)

where n0 = n0(x0, x1) with 0 < n0 < 1, is a root of the nonlinear algebraic equation

F(n0) = H(n0) , (4.40)

F(n0) ≡ 6βγ

(
1

α (x0)n0
− 1

α (x1) (1− n0)

)
, H(n0) ≡ mn0 + p ,

in which m ≡ (x0 − x1)/D0 < 0 and p ≡
(
x21 − x20

)
/2D0 > 0.

We now investigate the solvability of the nonlinear algebraic equation (4.40). Since F(n0) tends to

infinity as n0 −→ 0+ and F(n0) −→ −∞ as n0 −→ 1−, it follows that there must be at least one root n∗0 to

(4.40) for 0 < n∗0 < 1. However, non-uniqueness of solutions can not be ruled out as x0 < x1, which would

be require m < 0. Numerically we find that this root is unique for γ > 0.085 for the parameter values in

Table 2.1(b).
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Fig. 4.4: Profile (top) and time-dependent spike locations (bottom) for the two interior spikes case. DAE system
(4.39) is solved numerically, and the quasi-steady-state solution is compared to full numerics where n0 is
computed from (4.40). Notice that the spike that is closer to the boundary x = 0 has lower amplitude.
This is a consequence of decreasing gradient (represented by the dot-dash line in the upper plot), as can
be seen from formulas (4.30) for nj and quasi-steady-state solution (4.35) for U . (a) Here γ = 0.1222,
n0 = 0.3687 and other parameter values as given in Table 2.1(a). (b) Here γ = 0.1182, n0 = 0.4942 and
other parameter values as given in Table 2.1(b).

Fig. 4.4(b) shows a favourable comparison between full numerical results for U and the corresponding

asymptotic result for U given in Proposition 4.5 and Proposition 4.7 for the two-interior-spikes case. How-

ever, notice there is no favourable comparison, in Fig. 4.4(a), for parameter set as given in Table 2.1(a)

presumably due to the fact that this is effectively a smaller domain and finite size effects are more pro-

nounced when trying to fit more than one pulse.

4.3.1. Boundary and Interior Patch Solution. Next, we construct a quasi-steady-state solution

for (2.4) that has a boundary patch at x = 0 and an interior patch at x = x1. The slow dynamics of the

interior patch is also determined. Since the analysis is similar to the one above we will only briefly outline

the derivation.

A leading-order uniformly valid approximation for the quasi steady-state solution for u is

u ∼ 1

α(0)v0
w
(x
ε

)
+

1

α (x1) v1
w

(
x− x1
ε

)
. (4.41)

In the inner regions, v ∼ v0 in x = O(ε) and v ∼ v1 in |x− x1| = O(ε), where v0 and v1 are constants to

be found.

In place of (4.30), the leading-order solution ṽ0 for the outer approximation of v satisfies

D0ṽ0xx = −1 +
6βγ

α (x1) v1
δ(x− x1) , 0 < x < 1 ; (4.42)

ṽ0x(1) = 0 , D0ṽ0x
(
0+
)

=
3βγ

α(0)v0
,

subject to the two matching conditions that ṽ0(0) = v0 and ṽ0(x1) = v1. By integrating the equation for

ṽ0 over the domain, we derive that

n0
2

+ n1 = 1 ; where n0 ≡
6βγ

α(0)v0
, n1 ≡

6βγ

α (x1) v1
. (4.43)
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The solution to (4.42) is

ṽ0(x) = n1G(x;x1) +
n0
2
Gb(x) + v̄0 , (4.44)

where G(x;x1) and Gb(x) are the Green’s functions of (4.12) and (4.27). Here v̄0 is again to be determined.

By imposing ṽ0(0) = v0 and ṽ0(x1) = v1, we obtain that n0 and n1 satisfy the coupled system

6βγ

α(0)n0
= n1G(0;x1) +

n0
2
Gb(0) + v̄0 ,

6βγ

α(x1)n1
= n1G(x1;x1) +

n0
2
Gb(x1) + v̄0 .

By subtracting these two equations, and by using n0 = 2(1 − n1), we get that n1 satisfies the scalar

nonlinear algebraic equation

6βγ

(
1

α(x1)n1
− 1

2(1− n1)α(0)

)
= mn1 + p , (4.45)

where m ≡ G(x1;x1)−G(0;x1)−Gb(x1)+Gb(0) and p ≡ Gb(x1)−Gb(0). Then, by using (4.13) and (4.28)

for the two Green’s functions, m and p can be evaluated explicitly. The result is given below in (4.48).

With regards to the dynamics of the interior patch, the result (4.37) still applies, but where ṽ0 in (4.37)

is now given by (4.44). In this way, we get

dx1
dη

=
α (x1)n1

3βγ

(
n1 〈Gx〉1 +

n0
2
Gbx(x1)

)
+

2α′ (x1)

α (x1)
. (4.46)

Then, by using (4.13) and (4.28), together with n0 = 2(1 − n1), we can explicitly calculate the terms in

this ODE involving the Green’s functions. The result is summarised in the following formal proposition:

Proposition 4.8. Under the conditions of Proposition 4.5, the slow dynamics of a quasi-steady-state

solution with a boundary patch at x = 0 and an interior patch at x = x1 is characterised by the DAE

system

dx1
dη

=
n1

3βγD0
α(x1)

(
1− n1

2
− x1

)
+

2α′(x1)

α(x1)
, (4.47)

where 0 < n1 < 1, which depends on x1, is a root of the nonlinear algebraic equation

Fb(n1) = Hb(n1) ; (4.48)

Fb(n1) ≡ 6βγ

(
1

α(x1)n1
− 1

2(1− n1)α(0)

)
, Hb(n1) ≡ mn1 + p ,

in which m ≡ −x1/D0 < 0 and p ≡ x1 (1− x1/2) /D0 > 0.

Since Fb(n1) −→ ∞ as n1 −→ 0+ and Fb(n1) −→ −∞ as n1 −→ 1−, it follows that there must be a

root n∗1 to (4.40) on 0 < n∗1 < 1. However, as in Proposition 4.7, solution uniqueness can not be guaranteed

as m < 0.

5. Competition Instability of Multi-Patch Patterns. In §3 a numerical bifurcation analysis was

used to determine the effect on the solution of changing both the auxin rate parameter k20 and the length of

the domain. While the trends of the asymptotic analysis are similar to the numerical bifurcation diagrams,

the slow-time asymptotics of §4 has not been able to capture fold bifurcations in the correct parameters. In

this section, using a different method, we derive a sufficient condition for which a multi-patch pattern can

become unstable to an O(1) time-scale instability as either k20 or the length of the domain is varied. Such
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Fig. 5.1: A single-patch and two-patch outcome for several lengths and two k20 values; using the parameter set
given in Table 2.1(a), the k20-values indicated and (A)-(B) L = 50, (C)-(D) L = 60, (E)-(F) L = 70,
(G)-(H) L = 80.

an instability occurs on a time scale much faster than that of the slow dynamics of the patches studied

in §4.1.2.

In terms of the original variables of (2.4), we first illustrate this instability by considering two-patch

solutions on a domain of length L for various k20 values. From full numerical solutions of (2.4), starting

with an initial condition of a two-patch steady-state solution, in Fig. 5.1 below we show the eventual fate

of a two-patch solution as t increases for either L = 50, 60, 70, 80 and for either k20 = 0.1, 0.2. The results

for k20 = 0.1 for the four different values of L are shown in the first column of Fig. 5.1. There we observe

that the two-patch pattern is destroyed rather quickly for L = 50, 60, 70 (frames A,C,E), and it persists

only when L = 80 (frame G). However, if we increase the value of k20 up to k20 = 0.2, then as shown in the

second column of Fig. 5.1, the two-patch pattern is annihilated suddenly only when L = 50, 60 (frame B,

D). Based on these numerical results, we might conjecture that an O(1) time-scale instability is triggered

for a multi-patch pattern when the domain length is below some threshold, and that this threshold value

depends on k20. This type of instability, leading to the destruction of some patches in a multi-patch

pattern, has been previously called a competition instability in the context of the Gierer–Meinhardt model

[22] and other systems, see [23, 50], for instance.

5.1. A Non-local Eigenvalue Problem. The analysis of this O(1) time-scale instability is based

upon first linearising (2.4) around the quasi-steady-state solution, denoted here by us and vs, as given

asymptotically in Proposition 4.5. In the linearization we “freeze” the locations of the patches, since

they evolve only on an O
(
ε−2
)

time-scale that is very long in comparison with the fast O(1) time-scale

instability that we are seeking. After performing an asymptotic reduction of this linearised problem, we

obtain a non-local eigenvalue problem whose spectrum governs the competition instability. The eigenvalue

problem is obtained by substituting

u(t, x) = us + eλtϕ(x) , v(t, x) = vs + eλtψ(x) , ϕ , ψ � 1 , (5.1)
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into (2.4) to obtain, on 0 < x < 1, that

ε2ϕxx − ϕ+ 2α(x)usvsϕ+ α(x)u2sψ +
ε2

τγ
ψ = λϕ , (5.2a)

D0ψxx − ε−1τγα(x)u2sψ − εψ = ε−1 (τγ (2α(x)usvsϕ− ϕ) + βγϕ) + ετλψ , (5.2b)

where φx = ψx = 0 at x = 0, 1.

As similar to [23], the eigenfunction for the fast component is localized and has the form

ϕ(x) ∼
N∑
j=0

ϕj
(
ε−1 (x− xj)

)
, ϕj −→ 0 as |ξ| −→ ∞ .

By substituting this form into (5.2a), and using the leading-order inner results us ∼ w/
[
α(xj)v

j
]

and

vs ∼ vj ∼ 6βγ/α(xj)nj , as given in Proposition 4.5, we conclude that ϕj satisfies

L0ϕj +
n2j

36β2γ2
α (xj)w

2ψ (xj) = λϕj , −∞ < ξ <∞ , (5.3)

with ϕj −→ as |ξ| −→ ∞, where L0ϕ ≡ ϕξξ + 2wϕ − ϕ is the local operator of linearization around the

spike solution w given by (4.5). Key properties of the eigenvalue problem for L0 are given in Theorem 2.5

of [51]). Here nj is to be computed from the nonlinear algebraic system in (4.36).

In order to determine ψ(xj) in (5.3) we must formulate an outer problem for ψ from (5.2b) that is

valid except at O(ε) distances from the patch locations. To do so, we use the fact that, since us is localized

near each patch, the O
(
ε−1
)

terms in (5.2b) can be approximated for ε� 1 as Dirac masses

ε−1τγα(x)u2sψ −→
τ

36β2γ

 ∞∫
−∞

w2 dξ

 N∑
j=0

n2jα (xj)ψ δ (x− xj) ,

ε−1 (τγ (2α(x)usvsϕ− ϕ) + βγϕ) −→ 2τγ

N∑
j=0

∞∫
−∞

(
w − 1

2

(
1− β

τ

))
ϕj dξ δ (x− xj) .

Upon substituting these formulae into (5.2b), we obtain in the outer region that ψ satisfies

D0ψxx −
τ

6β2γ

 N∑
j=0

n2jα (xj) δ (x− xj)

 ψ = 2τγ

N∑
j=0

δ (x− xj)
∞∫
−∞

(
w − 1

2

(
1− β

τ

))
ϕj dξ , (5.4)

on 0 < x < 1 subject to ψx(0) = ψx(1) = 0. This problem is equivalent to seeking a continuous function

ψ(x) satisfying

ψxx = 0 , 0 < x < 1 ; ψx(0) = ψx(1) = 0 , (5.5)

subject to the following jump conditions on the derivative at each xj :

D0

(
ψx
(
x+j
)
− ψx

(
x−j
))

=
aj
γ
ψj + γbj , j = 0, . . . , N . (5.6)

Here we have defined ψj , aj , and bj , for j = 0, . . . , N , by

ψj = ψ (xj) , aj ≡
τn2

j

6β2
α (xj) , bj ≡ 2τ

∞∫
−∞

(
w − 1

2

(
1− β

τ

))
ϕj dξ . (5.7)
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We now solve this problem explicitly to determine the ψj , which are needed in (5.3). As in [50], we

define the positive semi-definite matrix N by

N ≡



l1 −l1 0 · · · 0 0 0

−l1 l1 + l2 l2
. . .

. . . 0 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

0 0
. . .

. . . −lN−1 lN−1 + lN −lN
0 0 0 · · · 0 −lN lN


; lj+1 ≡

1

xj+1 − xj
. (5.8)

In addition, with aj and bj as defined in (5.7), we define the vector b, the diagonal matrix A, and the

matrix M by

A ≡ diag (aj) , b ≡ (b0, . . . , bN )
T
, M ≡ N +

1

D0γ
A . (5.9)

The matrix M is clearly diagonally dominant, and hence is invertible. The solution Ψ = (ψ0, . . . , ψN )T to

(5.5) and (5.6), is readily calculated as

Ψ = − γ

D0
M−1b , b = 2τ

∞∫
−∞

(
w − 1

2

(
1− β

τ

))
φ dξ , (5.10)

where φ ≡ (ϕ0, . . . , ϕN )
T

.

Next, we define the diagonal matrix K and the matrix P by

K = diag
(
n2jα (xj)

)
=

6β2

τ
A , P ≡ KM−1 , (5.11)

where M is defined in (5.9). Then, (5.3) can be written as a vector NLEP of the form

L0φ−
τ

18β2D0γ
w2

∞∫
−∞

(
w − 1

2

(
1− β

τ

))
Pφ dξ = λφ , −∞ < ξ <∞ , (5.12)

with φ −→ 0 as |ξ| −→ ∞.

Next, we diagonalise P as P = QEQ−1 where Q is the matrix of eigenvectors of P and E is the

corresponding diagonal matrix of eigenvalues. Then, upon defining Φ = Q−1φ, (5.12) is diagonalised to

N + 1 scalar NLEP’s of the form

L0Φ− µj
6
w2 (I1 − κI2) = λΦ , −∞ < ξ <∞ ; Φ −→ 0 , as |ξ| −→ ∞ , (5.13)

where µj , κ, I1, and I2, are defined by

µj =

(
τ

3β2D0γ

)
pj , κ =

1

2

(
1− β

τ

)
, I1 =

∞∫
−∞

wΦ dξ , I2 =

∞∫
−∞

Φ dξ . (5.14)

Here pj for j = 0, . . . , N are the eigenvalues of P. Note that since A = τ/(6β2)K and M is related to N

by (5.9), then P is invertible with inverse

P−1 = NK−1 + ωI , ω ≡ τ

6β2D0γ
. (5.15)

27



Let σ0, . . . , σN be the eigenvalues of matrix NK−1. Then, from (5.14) and (5.15), we calculate that

µj = 2ω/(σj + ω) for j = 0, . . . , N .

Since the NLEP (5.13) has two separate non-local terms, it has a different form than the NLEP’s studied

for other reaction-diffusion systems in [22, 23, 50]. However, if we integrate (5.13) over −∞ < ξ <∞, we

can obtain I2 in terms of I1 as

I2 =
2− µj

λ+ 1− κµj
I1 .

Then, by eliminating I2 in (5.13), we obtain a traditional NLEP with only one non-local term

L0Φ− θj(λ)

6
w2

∫ ∞
−∞

wΦ dξ = λΦ , −∞ < ξ <∞ ; θj(λ) ≡ µj
λ+ 1− 2κ

λ+ 1− µjκ
, (5.16)

for j = 0, . . . , N , with Φ −→ 0 as |ξ| −→ ∞.

The final step in the derivation of the NLEP is to notice that θj is implicitly determined by µj , as

can bee seen in (5.16). This completes the formal derivation of the NLEP, and we summarise the result as

follows:

Proposition 5.1. The stability on an O(1) time-scale of an N+1 interior patch quasi-steady-state solution

is determined by the spectrum of the NLEP

L0Φ− θj(λ)w2

∫ ∞
−∞

wΦ dξ∫ ∞
−∞

w2 dξ

= λΦ , −∞ < ξ <∞ , (5.17)

with Φ −→ 0 as |ξ| −→ ∞, where θj(λ), for j = 0, . . . , N , is given by

θj(λ) ≡ 2ω(λ+ 1− 2κ)

(λ+ 1)(σj + ω)− 2κω
, ω =

τ

6β2D0γ
, κ =

1

2

(
1− β

τ

)
. (5.18)

Here σj for j = 0, . . . , N are the eigenvalues of the matrix NK−1, where N and K are given in (5.8) and

(5.11) in terms of the instantaneous locations x0, . . . , xN of the patches.

Before stating our main instability result, we need to examine the analyticity of θj(λ) and some

properties of the eigenvalues σj of NK−1.

We first consider the eigenvalues σj for j = 0, . . . , N of NK−1, which we order as σi ≤ σj for i < j.

Since the sum of each row of N vanishes, then Ne = 0 for e = (1, . . . , 1)T , which implies that N is a

singular matrix. Moreover, it is readily shown that the nullspace of N is one-dimensional, so that σ0 = 0 is

a simple eigenvalue of NK−1. Next, since N is positive semi-definite and the matrix K has positive entries,

it follows that NK−1 is also positive semi-definite, which implies that σj > 0 for 1 ≤ j ≤ N . To show this

we calculate with x = K1/2y that xTNK−1x = yTK1/2NK−1/2y. Then, since K1/2NK−1/2 has the same

spectrum as the positive semi-definite matrix N, it follows from the equality above that xTNK−1x ≥ 0

for all x 6= 0. Hence NK−1 is positive semi-definite so that σj > 0 for j = 1, . . . , N .

Next, we examine θj(λ) in (5.18). This function has a simple pole at λ = λ̃ ≡ −1 + 2κω/(σj + ω).

Using (5.18) for κ it follows that the location of this pole satisfies λ̃ < 0 if and only if −βω/τ < σj . Since

the parameters are positive and σj ≥ 0, it follows that θj(λ) is analytic in Re(λ) ≥ 0. Moreover, 1/θj(λ)

is analytic in Re(λ) ≥ 0 since the simple zero of θj is at λ = −β/τ < 0.

With these preliminary results in hand, we now give a rigorous result for the spectrum of (5.17), which

determines a sufficient condition for an instability.
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Proposition 5.2. If θj(0) < 1 for some j, then the NLEP (5.17) has an unstable real eigenvalue in

Re(λ) > 0. If θj(0) = 1, then Φ = w an eigenfunction of (5.17) corresponding to a zero eigenvalue.

Proof. The proof of this rigorous result is implicit from the analysis in §3 of [51] and is sketched as

follows. It is readily shown that the eigenvalues of (5.17) are the roots λ of g(λ) ≡ Cj(λ)−F(λ) = 0, where

Cj(λ) ≡ 1/θj(λ) and F(λ) is defined by

F(λ) ≡
∫∞
−∞ w

[
(L0 − λ)

−1
w2
]
dξ∫∞

−∞ w2 dξ
,

in terms of the local operator L0Ψ ≡ Ψξξ −Ψ + 2wΨ and the homoclinic solution w. It is well-known that

the local problem L0Ψ = νΨ has a unique positive eigenvalue ν0 > 0 (cf. [52]). In Proposition 3.5 of [51]

it is rigorously established that F(λ) has the following properties on the positive real axis:

F(0) = 1 ; F(λ)→ +∞ as λ→ ν−0 ; F ′(λ) > 0 for 0 < λ < ν0 .

With these properties for F(λ), it follows that if Cj(0) > 1 and Cj(λ) is analytic in Re(λ) ≥ 0, then Cj(λ)

and F(λ) must cross at some real λ? in 0 < λ? < ν0. Thus, λ? is an unstable discrete eigenvalue of the

NLEP (5.17) when θj(0) < 1. Finally, if λ = 0 and θj(0) = 1, then the readily-derived identity L0w = w2

shows that Φ = w. �

This result provides a simple sufficient condition to test for an instability, with the threshold condition

on the parameters obtained by setting θj(0) = 1.

For the special case of a one-patch solution, for which σ0 = 0, we obtain that θ0 = 2, which is

independent of λ and any of the other parameters. For this special case, Lemma A and Theorem 1.4

of [52] proves for the resulting NLEP that Re(λ) < 0. Therefore, a one-patch solution with a patch at any

permissible location is always stable to an O(1) time-scale instability.

Thus, for N > 1, if θj(0) < 1 for some j = 1, . . . , N , then the N -patch quasi-steady-state solution is

unstable. By setting θj(0) = 1, we obtain the following main instability result:

Proposition 5.3. Let N > 1. Then, the quasi-steady-state solution of (2.4) as given in Proposition 4.5

with patches at x0, . . . , xN is unstable on an O(1) time-scale if there exists at least one j in j = 1, . . . , N

for which

σj > σ∗j , where σ∗j ≡
1

6βD0γ
. (5.19)

Here σj for j = 1, . . . , N are the positive eigenvalues of the matrix NK−1, where N and K are given in

(5.8) and (5.11) in terms of the instantaneous patch locations x0, . . . , xN . In contrast, a one-patch solution

is always stable to an O(1) time-scale instability.

We remark that the instability criterion (5.19) can be satisfied at some later time through the slow

motion of a collection of patches evolving under the DAE system in Proposition 4.5. This potential

triggering of a fast O(1) time-scale instability through the intrinsic motion of a collection of patches is a

dynamic bifurcation event, and as we shall show below it is the linear instability mechanism that triggers

a nonlinear event leading to the destruction of the patches, as observed in Fig. 5.1.

We remark that although Proposition 5.2 provides a sufficient condition for instability, due to the

complicated dependence of θj on λ, we have been unable to provide a rigorous proof that Re(λ) < 0

whenever θj(0) < 1 ∀j. For the two-patch example of §5.2.1, we observe from full numerical computations

that there is indeed no instability when θj(0) > 1.
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Fig. 5.2: O(1) time-scale competition criticality condition as D0 is varied (corresponding to variation of L as de-
picted). Circled labels correspond to selected solutions with respect to their criticality value; these solutions
are accordingly plotted in Fig. 5.3. Parameter set given in Table 2.1(b) with γ = 0.5 (corresponding to
k20 = 3.52).

5.2. The Two-patch Case. Recall that the original bifurcation parameter is k20, which models the

auxin rate in the cell, while the length L of the domain is another important parameter. Since D0 depends

on L, while γ depends on k20, it is convenient to write the instability threshold in (5.19) in terms of

Λ ≡ D0γ. In this way, (5.19) predicts that an O(1) time-scale instability will occur when

Λ > Λ∗ ≡ 1

6βσM
, where σM ≡ max

1≤j≤N
{σj} . (5.20)

We now illustrate our result for the two-patch case of Fig. 5.1. For this case, we calculate

NK−1 =


l1

α(x0)n20
− l1
α(x1)n21

− l1
α(x0)n20

l1
α(x1)n21

 , n0 + n1 = 1 ,

which has the eigenvalue σ0 = 0. The positive eigenvalue σ1 and corresponding eigenvector q1 are given

explicitly by

σ1 =

(
1

α(x0)n20
+

1

α(x1)n21

)
l1 , where l1 =

1

x1 − x0
; q1 = (1,−1)T .

By using (5.20), we then obtain the following rigorous result:

Proposition 5.4. A quasi-steady-state solution with exactly two interior patches has an O(1) time-scale

competition instability when

Λ = D0γ > Λ∗ =
x1 − x0

6β

(
1

α(x0)n20
+

1

α(x1) (1− n0)
2

)−1
.

Here n0, which depends on x0 and x1, satisfies the nonlinear algebraic equation (4.40).
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Fig. 5.3: O(1) time-scale competition instability of a two-interior-patch quasi-steady-state solution. (a) Stable
solution that corresponds to label B in Fig. 5.2. (b) Unstable solution that corresponds to label C.
Parameter values in D0 for both figures are such that we are very close to the threshold θj(0) = 1; either
slightly above (a) or slightly below (b). Other parameter values are as given in Table 2.1(b).

5.2.1. Competition Threshold. This result suggests that Λ∗ is smaller whenever the patches are

more closely spaced, and hence it is easier to generate an instability for closely spaced patches. Furthermore,

the instability eigenvector q1 is of sign-fluctuation type, which means that the linear instability locally

increases the amplitude of one of the patches, while decreasing the amplitude of the other. We remark

that, since the nonlinear algebraic equation (4.36) determining n0 also depends on γ and D0, it is not

analytically feasible to extract a simple scaling law in terms of L and k20 that guarantees an instability.

To conclude this section, we test numerically the threshold given in Proposition 5.2 for the two-interior

patch case. By the using parameter set given in Table 2.1(b) and a fixed value γ = 0.5, then from

Proposition 4.7 we compute steady-state patch locations x∗0, x∗1 and n0 in terms of the parameter D0. This

provides us with a family of steady-state patch solutions in terms of D0 for which we can either be above

or below the theoretical stability threshold of θj(0) = 1. In Fig. 5.2 we plot the numerically computed

curve θj(0) versus D0, which shows that θj(0) < 1 when D0 is too large, or equivalently when the domain

length is too small. On this curve, labels A and B correspond to values of D0 such that an O(1) time-

scale competition stability is predicted, while for labels C and D no such instabilities are predicted. To

validate this theoretical result, we calculate the quasi steady-state solution, as given in Proposition 4.5, at

the parameter value of D0 corresponding to a steady-state, and we then use it as the initial condition in

the numerical computation of the full system (2.4). The full numerical results corresponding to labels B

and C in Fig. 5.2 are shown in Fig. 5.3. The initial profile U0(x;x0,1), final profile U(t∞, x) and O(1)-time

evolution for the stable case of the active component can be seen in Fig. 5.3(a), while instability is shown

in Fig. 5.3(b). Notice, from Fig. 5.2–5.3 that the θj(0) values for labels B and C are both very close to the

threshold value of unity, which provides a rather strict test of the stability threshold as provided by the

asymptotic theory. In addition, we observe in Fig. 5.3(b) that the instability leads to the destruction of

only one of the two patches, as suggested by the theoretically predicted sign-fluctuating linear instability.

5.3. Boundary-interior Patch Case. Next let us derive an instability result for the special case

of a two-patch pattern consisting of a boundary patch and a single interior patch. The dynamics of this
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Fig. 5.4: Numerical results for an O(1) time-scale competition instability of a quasi-steady-state solution consisting
of a boundary patch and a single interior patch. (a)-(b) L = 50, (c)-(d) L = 70, and k20 = 0.05 − 0.2 as
indicated in each panel. Other parameter values as given in Table 2.1(a).

quasi-steady-state solution was characterised in Proposition 4.8. Since the analysis is very similar to that

given above, we will give a brief sketch of the derivation of the NLEP and the results.

For (5.2) we look for a localized eigenfunction in the form

ϕ(x) ∼ ϕ0

(
ε−1x

)
+ ϕ1

(
ε−1(x− x1)

)
, ϕj −→ 0 as |ξ| −→ ∞ ,

and we readily obtain that (5.3) still holds. However, in place of (5.4) we obtain that the leading-order

outer approximation for ψ now satisfies

D0ψxx =

(
a1
γ
ψ1 + γb1

)
δ(x− x1) , 0 < x < 1 ;

D0ψx(0+) =

(
a0
2γ
ψ0 +

γ

2
b0

)
, ψx(1) = 0 .

Here bj for j = 0, 1 is given in (5.7), while

ψ1 = ψ (x0) , ψ0 = ψ (0) , a0 ≡
τn2

0

6β2
α (0) , a1 ≡

τn2
1

6β2
α (x1) .

Here n0 = 2(1− n1) where n1 satisfies (4.48) of Proposition 4.8.
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We can then readily modify the stability analysis of the multi-patch case given above to again derive

the NLEP (5.17) where the multiplier θj(λ) is given in (5.18). The key difference in the calculation, as

compared with the derivation of the NLEP for two interior patches, is that σj for j = 0, 1 in the definition

of θj(λ) of (5.18) are now the two eigenvalues of a new matrix NbK
−1, where

Nb ≡
(

2l1 −2l1
−l1 l1

)
, with l1 ≡

1

x1
, K ≡

(
n20α(0) 0

0 n21α(x1)

)
.

The two eigenvalues are σ0 = 0, so that θ0 = 2 for all λ, and

σ1 = l1

(
2

n20α(0)
+

1

n21α(x1)

)
.

The following rigorous instability threshold for the formally derived NLEP is obtained by setting θ1(0) = 1,

and by replacing n0 with n0 = 2(1− n1):

Proposition 5.5. A quasi-steady-state solution with a boundary patch at x = 0 and an interior patch at

x = x1 has an O(1) time-scale competition instability when

Λ = D0γ > Λ∗b ≡
x1
6β

(
1

α(x1)n21
+

1

2α(0) (1− n1)
2

)−1
. (5.21)

Here n1, which depends on x1, satisfies the nonlinear algebraic equation (4.48).

The full numerical computations of the original PDE system (2.4) shown in Fig. 5.4 reveal the effect

of the domain length and the auxin parameter k20 on the stability of a pattern consisting of a boundary

and an interior patch. The initial condition for these simulations was a quasi-steady-state solution with

a boundary and an interior patch. Fig. 5.4(a) shows that only one patch survives; a boundary patch for

the smaller value of k20, and an interior patch for the larger k20 value. This is because the interior patch

location x1 is farther from the boundary when k20 is larger (see Fig. 4.2). However, in Fig. 5.4(b) where

k20 = 0.2, the two patches survive. In Figures 5.4(c) and 5.4(d) where L is larger, again both patches

survive. In Fig. 5.4(d), the slow evolution of the interior patch is evident over a long time-scale.

6. Conclusion. In this paper we have performed a thorough mathematical analysis of an inhomo-

geneous reaction-diffusion system that has previously been derived as a model for root hair formation in

plants, and shown to match both the behaviour of wild type and mutants in biologically plausible param-

eter regions. It is worthwhile pointing out some further predictions of analysis that are likely to have a

bearing on the biology.

• As the two key parameters auxin and cell length increase in the developing root hair cell, the

process of forming an active-ROP patch that will go on to bulge into a root hair bud proceeds via

a number of abrupt transitions, interspersed with periods of slow drift.

• The first abrupt transition is to form a patch of active ROP at the apical end of the cell. The

next transition is for this patch to become unstable and for a new patch to form in the interior of

the cell body, strongly biassed towards the apical end. This latter transition is hysteretic, which

means that once such a transition is triggered, a slight reversal of the steps that caused it will

not undo the transition. This is likely to be biologically important, since in reality all biochemical

processes will feature stochastic fluctuations and will be susceptible to influences from the plant’s

external environment. Hence the transition will be robust to both stochastic fluctuations and also

exogenous influence.
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• The formation of multiple root hairs could be construed as a matter of timing. If too much auxin

arrives too quickly, before secondary processes have caused a single ROP patch to lock into position

as the emerging hair is formed, then there can be a further transition to multiple patch states.

Similarly, if there is excess auxin or greater cell lengthening, but insufficient to cause multiple root

hairs, then we should expect that there will be further drift of the wild-type patch location from

the apical end.

• Finally, through the asymptotic analysis and the two-parameter bifurcation diagrams, we have

shown that the process we have described is robust to relaxation of some of the underlying as-

sumptions that have gone into the model. At present the auxin dependency of the activation

process is only hypothesised. However we can see that many of the other parameters could play a

similar role to that of k2 in controlling this hysteretic transition process. Also, the precise shape

of the auxin gradient is not important, providing it is monotically decreasing.

Each of these predictions is ripe for further experimental investigation.

This paper also sheds light more generally on the mathematics of pattern formation. It seems significant

that this model without a spatial gradient is in the regime in which Turing instabilities occur. Yet, each

of these instabilities are subcritical. Note that a subcritical initial patterning instability is one of the

ingredients of the theory of homoclinic snaking on an infinite domain, see e.g. [3, 6]. This connection will

be explored in future work. Without the spatial gradient the model still forms localized patterns, the

role of the gradient seems just to be that of controlling the location of the localized pattern, through the

slow-time-scale patch-drift equation.

Another direction that will be explored in future work will be the extension of the ideas in this paper to

higher spatial dimensions. The biological process described here takes place on the surface of a long, thin

epidermal cell. Preliminary results suggest similar behaviour occurs for the same model posed on a long,

thin mathematical domain. Further issues to be addressed though involve the interplay between lateral

stripes and spot-like states, the richer zoo of possible localized states, further instability mechanisms and

how these are affected by transverse properties of the morphogen gradient.

Acknowledgements. The research of V.B–M. is supported by a CONACyT grant from the Mexican

government and additional financial support from the UK EPSRC. M. J. W. was supported by NSERC

grant 81541.

REFERENCES

[1] D. L. Benson, J. A. Sherrat, and P. K. Maini, Diffusion driven instability in a inhomogeneous domain, Bull. Math.
Biol., 55 (1993), pp. 365–384.

[2] F. Berger, C.–Y. Hung, L. Dolan, and J. Schiefelbein, Control of cell division in the root epidermis of Arabidopsis
thaliana, Dev. Biol., 194 (1998), pp. 235–245.

[3] J. Burke and E. Knobloch, Snakes and ladders: Localized states in the Swift–Hohenberg equation, Physics Letters A,
360 (2006), pp. 681–688.

[4] X.R. Bustelo, V. Sauzeau, and I.M. Berenjeno, GTP-binding proteins of the Rho/Rac family: regulation, effectors
and functions in vivo, Bioessays, 29 (2007), pp. 356–370.

[5] W. Chen and M.J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott
model, SIAM J. Applied Dynamical Systems, 10 (2011), pp. 582–666.

[6] J.H.P. Dawes, Localized pattern formation with a large-scale mode: Slanted snaking, SIAM J. Applied Dynamical
Systems, 7 (2008), pp. 186–206.

[7] E. Doedel, B.E. Oldeman, A.R. Champneys, f. Dercole, T. Fairgrieve, Y. Kuznetsov, X. Wang,
and C. Zhang, AUTO-07P: Continuation and bifurcation software for ordinary differential equations.
http://www.dam.brown.edu/people/sandsted/auto/auto07p.pdf, 2012.

34



[8] A. Doelman and T.J. Kaper, Semistrong pulse interactions in a class of couple reaction-diffusion equations, SIAM J.
Applied Dynamical Systems, 2 (2003), pp. 53–96.

[9] A. Doelman, T.J. Kaper, and P.A. Zegeling, Pattern formation in the one-dimensional Gray–Scott model, Nonlin-
earity, 10 (1997), pp. 523–563.

[10] L. Dolan, C. Duckett, C. Grierson, P. Linstead, K. Schneider, E. Lawson, C. Dean, S. Poethig, and
K. Roberts, Clonal relations and patterning in the root epidermis of Arabidopsis, Development, 120 (1994),
pp. 2465–2474.

[11] V. Dufiet and J. Boissonade, Conventional and unconventional Turing patterns, J. Chem. Phys., 96 (1992), pp. 662–
673.

[12] J. Ehrt, J. D. M. Rademacher, and M. Wolfrum, First and second order semi-strong interaction of pulses in the
Schnakenberg model. Draft version, 2012.

[13] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAut, SIAM, 2002.
[14] S. Etienne–Manneville and A. Hall, Rho GTPases in cell biology, Nature, 420 (2002), pp. 629–635.
[15] J. Foreman and L. Dolan, Root hairs as a model system for studying plant cell growth, Annals of Botany, 88 (2001),

pp. 1–7.
[16] G. Freshours, R. P. Clay, M. S. Fuller, P. Albersheim, A. G. Darvill, and M. G. Hahn, Developmental and

tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots, Plant. Physiol.,
110 (1996), pp. 1413–1429.

[17] M. E. Galaway, J. D. Masucci, A.M. Lloyd, V. Walbot, R. W. Davis, and J. W. Schiefelbein, The TTG gene is
required to specify epidermal cell fate and cell patterning in the Arabidopsis root, Dev. Biol., 166 (1994), pp. 740–754.

[18] T. Glimm, J. Zhang, and Y.–Q. Shen, Interaction of Turing patterns with an external linear morphogen gradient,
Nonlinearity, 22 (2009), pp. 2541–2560.

[19] T. Glimm, J. Zhang, Y.–Q. Shen, and S. Newman, Reaction-diffusion systems and external morphogen gradients: the
two-dimensional case, with an application to skeletal pattern formation, Bull. Math. Biol., 74 (2012), pp. 666–687.

[20] V.A. Grieneisen, A.F. Maree, P. Hogeweg, and B. Scheres, Auxin transport is sufficient to generate a maximum
and gradient guiding root growth, Nature, 449 (2007), pp. 1008–1013.

[21] C. Grierson and J. Schiefelbein, The Arabidopsis Book, American Society of Plant Biologist, 2002.
[22] D. Iron and M.J. Ward, The dynamics of multi-spikes solutions to the one-dimensional Gierer–Meinhardt model,

SIAM J. Appl. Math., 62 (2002), pp. 1924–1951.
[23] D. Iron, J. Wei, and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math.

Biol., 49 (2004), pp. 358–390.
[24] A.R. Jones, E.M. Kramer, K. Knox, R. Swarup, M.J. Bennett, C.M. Lazary, H.M. Ottoline Leyser, and

C.S. Grierson, Auxin transport through non-hair cells sustains root-hair development, Nat. Cell. Biol., 11 (2009),
pp. 78–84.

[25] M. Jones and N. Smirnoff, Nuclear dynamics during the simultaneous and sustained tip growth of multiple root hairs
arising from a single root epidermal cell, J. of Exp. Bot., 57 (2006), pp. 4269–4275.

[26] M. A. Jones, J–J. Shen, Y. Fu, H. Li, Z. Yang, and C. Grierson, The Arabidopsis Rop2 GTPase is a positive
regulator of both root hair initiation and tip growth, The Plant Cell, 14 (2002), pp. 763–776.

[27] T. Kolokolnikov, M.J. Ward, and J. Wei, Spot self-replication and dynamics for the Schnakenberg model in a
two-dimensional domain, J. Nonlinear Sci., 19 (2009), pp. 1–56.

[28] E. M. Kramer, PIN and AUX/LAX proteins: their role in auxin accumulation, Trends. Plant Sci., 9 (2004), pp. 578–
582.

[29] A. D. Lander, Pattern, growth, and control, Cell, 144 (2011), pp. 955–969.
[30] P. K. Maini, D. L. Benson, and J. A. Sherrat, Pattern formation in reaction-diffusion models with spatially inhomo-

geneous diffusion coefficients, IMA Journal of Mathematics Applied in Medicine & Biology, 9 (1992), pp. 197–213.
[31] P. K. Maini, K. J. Painter, and H. N. Phong–Chau, Spatial pattern formation in chemical and biological systems,

J. Chem. Soc., Faraday Trans., 93 (1997), pp. 3601–3610.
[32] K. Matties and C.E. Wayne, Wave pinning in strips, Proceedings of the Royal Society of Edinburgh, 136A (2006),

pp. 971–995.
[33] A.K. Molendijk, F. Bischoff, C.S.V. Rajendrakumar, J. Friml, and M. Braun, Arabidopsis thaliana ROP GT-

Pases are localized to tips of root hairs and control polar growth, EMBO J., 20 (2001), pp. 2779–2788.
[34] Y. Mori, A. Jilkine, and L. Edelstein–Keschet, Wave-pinning and cell polarity from a bistable reaction-diffusion

system, Biophysical Journal, 94 (2008), pp. 3684–3697.
[35] J.D. Murray, Mathematical Biology II: spatial models and biomedical applications, Springer–Verlag New York Inc.,

New York, 3rd. ed., 2002.
[36] S. Nagawa, T. Xu, and Z. Yang, Rho GTPases in plants: conservation and invention of regulators and effectors,

Small GTPases, 1 (2010), pp. 78–88.
[37] Y. Nishiura, Y. Oyama, and K.–I. Ueda, Dynamics of traveling pulses in heterogeneous media of jump type, Hokkaido

Mathematical Journal, 36 (2007), pp. 207–242.
[38] K.M. Page, P. Maini, and N.A.M. Monk, Pattern formation in spatially heterogenous Turing reaction-diffusion

models, Physica D, 181 (2003), pp. 80–101.
[39] , Complex pattern formation in reaction-diffusion systems with spatially varying parameters, Physica D, 202

(2005), pp. 95–115.
[40] H.–O. Park and E. Bi, Central roles of small GTPases in the development of cell polarity in yeast and beyond,

Microbiol. Mol. Biol. Rev., 71 (2007), pp. 48–96.
[41] R.J.H. Payne and C.S. Grierson, A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells,

PLoS ONE, 4 (2009), p. e8337. doi:10.1371/journal.pone.0008337.
[42] J. D. M. Rademacher, First and second order semi-strong interaction in reaction-diffusion systems, SIAM J. Applied

35



Dynamical Systems, 12 (2013), pp. 175–203.
[43] R.W. Ridge and A.M.C. Emons, eds., Root Hairs: cell and molecular biology, Springer, Berlin, Heidelberg, 2000.
[44] N. S. Savage, T. Walker, Y. Wieckowski, J. Schiefelbein, L. Dolan, and N.A.M. Monk, A mutual support mech-

anism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis,
PLoS Biology, 6 (2008), p. e235. doi:10.1371/journal.pbio.0060235.

[45] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81 (1979), pp. 389–400.
[46] TAIR, The arabidopsis information resource. http://www.arabidopsis.org/index.jsp, October 2012.
[47] P. van Heijster, A. Doelman, T. J. Kaper, Y. Nishiura, and K.–I. Ueda, Pinned fronts in heterogeneous media of

jump type, Nonlinearity, 24 (2011), pp. 127–157.
[48] J. A. Vastano, J. E. Pearson, W. Horsthemke, and H. L. Swinney, Chemical pattern formation with equal diffusion

coefficients, Physics Letters A, 124 (1987), pp. 320–324.
[49] M.J. Ward, D. Mcinerney, P. Houston, D. Gavaghan, and P. Maini, The dynamics and pinning of a spike for a

reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), pp. 1297–1328.
[50] M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, Studies

in Advance Mathematics, 109 (2002), pp. 229–264.
[51] , Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional Gierer–Meinhardt model,

J. Nonlinear Sci., 13 (2003), pp. 209–264.
[52] J. Wei, On single interior spike solutions for the Gierer–Meinhardt system: uniqueness and stability estimates, Europ.

J. Appl. Math., 10 (1999), pp. 353–378.
[53] J. Wei and M. Winter, Spikes for the Geirer–Meinhardt system with discontinuous diffusion coefficients, Nonlinear

Science, 19 (2009), pp. 301–339.
[54] X. Yuan, T. Teramoto, and Y. Nishiura, Heterogeneity-induced defect bifurcation and pulse dynamics for a three-

component reaction-diffusion system, Phys. Rev. E, 75 (2007), p. 036220.

36


