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Abstract

For the problem of adjudicating conflicting claims, we study lower bounds on the
awards of each agent. We propose extending a lower bound by performing the follow-
ing operation: (i) for each problem, assign the lower bound and revise the problem
accordingly; (ii) assign the bound of the revised problem. The “recursive-extension”
of a bound is the lower bound obtained by recursive application of this operation. We
provide necessary and sufficient conditions on a lower bound for there to be a unique
rule satisfying its recursive-extension. We show that, under these conditions, the rule
satisfying the recursive-extension of a bound is the unique rule satisfying the following
property: the awards assigned by a rule should be obtainable in two ways: (i) directly
applying the rule to the problem or (ii) first assigning the bound and revising the prob-
lem accordingly, and then applying the rule to the revised problem. Then, we study
whether this procedure leads to well-behaved lower bounds.

Keywords: Claims problems, Lower bounds, Recursive methods.
JEL Classification Numbers: C79, D63, D74

1 Introduction

When a group of agents have claims over some resource but there is not enough of it to
honor all of the claims, how should the resource be divided among them? When the resource
consist of a positive amount of a single infinitely divisible good, we have a “claims problem”.
A “rule” assigns, for each problem, a division of the resource among the agents. In this
paper we study lower bounds on how much of the resource each agent should receive. A
“lower bound” assigns, for each problem and each agent, a minimal amount of the resource
that she should receive. A rule satisfies a lower bound if, for each problem and each agent,
the rule assigns her at least as much as the lower bound does. Several lower bounds have
been proposed in the literature. Rules satisfying them (along with other properties) have
been identified, and some bounds have appeared in characterizations of rules.
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at the Wallis Institute Conference on Resource Allocation and Game-Theory, at Universitat Autònoma de
Barcelona, and at the Eighth International Meeting of the Social Choice and Welfare Society. This paper is
partly based on Chapter 2 of my Ph.D. dissertation.
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In economics, lower bounds are imposed for many different reasons: Participation con-
straints (i.e. individual rationality) are widespread; they are imposed when designing mech-
anisms and agents cannot be forced to participate. In other settings, lower bounds are used
as fairness criteria; when dividing a social endowment of goods it is often thought desirable
to provide to each agent a welfare level that is at least as large as her welfare level obtained
from dividing the endowment equally among the agents. For our model both interpreta-
tions are possible: For example, in a bankruptcy situation, where the value of a firm has
to be divided among a set of creditors, a lower bound provides insurance to the creditors.
In estate division problems, a lower bound can be interpreted as a partial division of the
resource that all agents agree upon from fairness considerations, but there may still be some
conflict over the remaining resources.

An alternative, more technical, interpretation of a lower bound is as an inefficient rule.
A lower bound assigns for each problem a division of the resource, but fails to allocate it
entirely. Under this interpretation, our results provide conditions under which extending
an inefficient rule leads to an efficient one.

Recently, a lower bound was introduced which assigns to each agent the minimum of
(i) her claim divided by the number of agents, and (ii) the amount to divide equally shared
by all the agents (Moreno-Ternero and Villar 2004). Many rules satisfy this bound, but only
one satisfies the following invariance property: the awards assigned by the rule should be
obtainable in two ways: (i) applying the rule directly or (ii) first assigning the lower bound,
then applying the rule to an appropriately revised problem (Dominguez and Thomson 2006).

In this paper we undertake a general study of this type of invariance property. For some
lower bounds the invariance property singles out a rule, while for other lower bounds it does
not. We show that a sufficient condition on a lower bound for the invariance property to
yield a unique rule is that the bound assigns, for each problem with a positive endowment
and to each agent with a positive claim, a positive amount. Moreover, the weaker condition
that the bound assigns, for each problem in which at least one agent has a positive claim, a
positive amount to at least one agent is not only sufficient but also necessary for a unique
rule to emerge.1 This is our main result. It also provides a new interpretation of the
invariance property: if, after assigning to each agent the amount assigned to her by the
lower bound and revising the problem accordingly, the lower bound of the revised problem
still assigns positive amounts to some agents, then we should apply it again. The “recursive-
extension of a bound” is obtained by recursively revising the problem and extending the
bound accordingly. Whenever the recursive-extension of a bound singles out a rule, it is the
unique rule satisfying the invariance property with respect to the bound.

We then study the behavior of the recursive-extension of a bound. To do so, we introduce
some properties of good behavior for rules and lower bounds.2 Most of the properties
that have been formulated for rules can also be directly applied to lower bounds; their
interpretation remains valid and the properties retain their appeal. Some properties, when
imposed on a bound, are automatically satisfied by its recursive-extension, and we say that
the property is “inherited”. In order to study the behavior of the recursive-extension of a

1Since lower bounds are interpreted as providing protection to the agents, the condition that a lower
bound assigns a positive amount to each agent seems desirable; for the alternative interpretation of a lower
bound as an inefficient rule, the condition that it assigns a positive amount to at least one agent can be
seen as weakening the efficiency requirement, but not as much as to allow a rule to distribute none of the
resource.

2Most of the literature on claims problems has been axiomatic. For a discussion on the axiomatic method,
applied to this problem and other economic problems, see Thomson (2001).
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bound we undertake a systematic investigation of inheritance. Some properties are inherited
on their own, while others are inherited only when imposed together with other properties.

2 The model

There is a social endowment E ∈ R+ of an infinitely divisible good.3 The endowment has
to be divided among a set N = {1, ..., n} of agents.4 Each agent i ∈ N has a claim ci ∈ R+

on the endowment. The endowment is not sufficient to honor all the claims. A claims
problem (or simply a problem) is a vector (c,E) ∈ R

|N |
+ ×R+ such that E ≤

∑

i∈N ci. Let
CN be the set of all problems with population N .5

An awards vector, x ∈ R
n
+, for the problem (c,E) ∈ CN distributes the resources

among the agents. It assigns to each agent i ∈ N the amount xi of the resource. For each
problem (c,E) ∈ CN we restrict attention to awards vectors which assign, to each agent,
a non-negative amount of the resource no larger than her claim, and which distribute the
endowment entirely, that is:

(i) 0 ≦ x ≦ c,6

(ii)
∑

i∈N xi = E.

Let X(c,E) denote the set of awards vectors for (c,E). Condition (i) are the non-
negativity and claims boundedness restrictions. Condition (ii) is efficiency. The set
of vectors satisfying efficiency is denoted F (c,E). For some problems, the set of awards
vectors consists of a single element.7 Such problems are called degenerate, and we obtain
the awards vector by definition of a rule. Whenever the set of awards vectors contains more
than one element, the problem is non-degenerate.

Definition 1. A rule is a function ϕ : CN → R
n, which maps each problem (c,E) ∈ CN ,

to an awards vector ϕ(c,E) ∈ X(c,E).

A graphical representation of a rule is by means of its paths of awards (see Figure 1).
Given a rule ϕ, for each claims vector c, the path of awards of ϕ for c is the image of the
function ϕ(c, ·) : [0,

∑

i ci] → X(c, ·), which maps each endowment E, with 0 ≤ E ≤
∑

i ci,
into the awards vector assigned by the rule. It describes the path followed by the awards
vectors when the endowment varies from 0 to the sum of the claims.

A rights vector x ∈ R
n
+ assigns to each agent i ∈ N the minimal guarantee xi of the

resource. For each problem (c,E) ∈ CN , we restrict attention to rights vectors that are
bounded above by the claims vector, and are feasible, that is:

(i) 0 ≦ x ≦ c,

(ii)
∑

i∈N xi ≤ E.

The set of rights vectors for the problem (c,E), denoted Y (c,E), is the set of vectors
satisfying conditions (i) and (ii). Condition (ii) is feasibility.

3The set R+ denotes the non-negative reals.
4We refer to the set of agents as the population of a problem.
5This model was first introduced by O’Neill (1982).
6Vector inequalities: x ≧ y ⇔ for each i ∈ N, xi ≥ yi; x ≥ y ⇔ x ≧ y and x 6= y; x > y ⇔ for each i ∈

N, xi > yi.
7Such problems arise when E = 0 or E =

∑

i∈N
ci, or when all but one of the claims are equal to 0.
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Figure 1: Paths of awards and paths of acceptable vectors. (a) Path of awards of ϕ for c. The
path traced out by the awards vectors assigned by the rule as the endowment varies from 0 to the sum of
the claims; the awards vectors ϕ(c, E) and ϕ(c, E′) are denoted x and x′ respectively. (b) The shaded area
is the path of acceptable vectors of b for c; the rights vectors b(c, E), b(c, E′), and b(c, E′′) are denoted y,
y′, and y′′ respectively. The path traced by the lower bound vectors as the endowment varies from 0 to the
sum of the claims passes through y, y′ and y′′.

Definition 2. A lower bound is a function b : CN → R
n, which maps each problem

(c,E) ∈ CN , to a rights vector b(c,E) ∈ Y (c,E)

A graphical representation for a lower bound is by means of its paths of acceptable
vectors (see Figure 1). Given a lower bound b, for each claims vector c, the path of
acceptable vectors of b for c is the image of the correspondence b(c, ·) : [0,

∑

i ci] → F (c, ·),
which maps each endowment E with 0 ≤ E ≤

∑

i ci, into the set of efficient vectors
dominating the rights vector assigned by the lower bound. It is a set of vectors satisfying n
restrictions. Each restriction assigns to one of the agents her right, and allows any division
of the remainder among the other agents.

We say that a rule satisfies a lower bound if, for each problem, the awards vector
assigned by the rule weakly dominates the rights vector assigned by the lower bound. Oth-
erwise it fails the lower bound. Graphically, there is a simple procedure to determine
whether or not a rule satisfies a lower bound. It is to verify whether, for each claims vector,
the path of awards of the rule lies within the path of acceptable vectors of the lower bound
(see Figure 1).

3 An inventory of lower bounds.

In this section, we introduce some existing lower bounds and formulate a new one. These
lower bounds will help to illustrate our results. It is worth noting that the definition of a
rule includes the requirement that, for each problem, awards are non-negative. Formally,
this restriction can be seen as a lower bound. It is a basic property that all rules should
satisfy, and following the literature, we embedded it into the definition of a rule. For the
same reason we also impose it on lower bounds.

The first lower bound assigns to each agent the difference between the endowment and
the sum of the claims of the other agents, or zero if this difference is negative. For each
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Figure 2: Graphical representations of some lower bounds for n = 2 (under the assumption that
c1 < c2). (a) Minimal rights. The first restriction traces a path which follows the vertical axis until the
point (0, c2), then follows a horizontal line until the claims vector; the second restriction traces a path which
follows the horizontal axis until the point (c1, 0), then follows a vertical line until the claims vector. For each
rule, its paths of awards lie inside the paths of acceptable vectors of minimal rights, hence all rules satisfy the
bound. (b) Reasonable lower bound. The first restriction traces a path which follows the 45◦ line until the
point ( c1

2
, c1

2
), then follows a vertical line until the point ( c1

2
, c2 + c1

2
); the second restriction traces a path

which follows the 45◦ line until the point ( c2

2
, c2

2
), then follows a horizontal line until the point (c1 + c2

2
, c2

2
).

If c1 6= c2, the paths of awards (for c) of the proportional and the constrained equal losses rules lie outside
the path of acceptable vectors (for c) of reasonable lower bound, hence they fail the bound. (c) Min lower

bound. Both restrictions trace out a path which follows the 45◦ line until the point (min{ci}
2

,
min{ci}

2
), then

the first restriction traces a vertical line until the point (min{ci}
2

, c1 + c2 − min{ci}
2

), the second traces the
symmetric horizontal line.

(c,E) ∈ CN , agent i’s minimal right is mi(c,E) = max{E −
∑

j∈N\i cj, 0}. The minimal
rights lower bound (Curiel, Maschler, and Tijs 1987) is given by:

m(c,E) = (mi(c,E))i∈N .

Minimal rights is a very weak bound (see Figure 2). It is an implication of non-negativity,
claim-boundedness, and efficiency. Thus, all rules satisfy minimal rights.

Suppose we want to guarantee to each agent a fixed proportion λ of her claim. Since
the sum of the claims can be arbitrarily large relative to the endowment, the only feasible
proportion is λ = 0. If we consider guaranteeing to each agent a fixed proportion of her
claim truncated at the endowment there are many feasible proportions, and λ = 1

n
, is the

highest such proportion. This observation provides the motivation of our next lower bound:
For each (c,E) ∈ CN , agent i’s truncated claim is ti(c,E) = min{ci, E}. The vector

of truncated claims is t(c,E) ≡ (ti(c,E))i∈N . The reasonable lower bound (Moreno-
Ternero and Villar 2004) is given by:

r(c,E) =
1

n
t(c,E).

Most rules in the literature satisfy the reasonable lower bound. Examples are the
constrained equal awards rule (which selects x ∈ X(c,E) such that for some λ ∈ R+,
x = (min{ci, λ})i∈N ); the random arrival rule (which selects the average of the awards
vectors obtained by imagining agents arriving one at a time and fully compensating them

5



until the endowment runs out, under the assumption that all orders are equally likely); and

the Talmud rule (which selects x ∈ X(c,E) such that x = (min{ ci

2 , λ})i∈N if E ≤
∑

ci

2 ,
and x = c

2 +(max{ ci

2 −λ, 0})i∈N otherwise).8 However, the proportional rule (which selects
x ∈ X(c,E) such that for some λ ∈ R+, x = λc) and the constrained equal losses rule
(which selects x ∈ X(c,E) such that for some λ ∈ R+, x = (max{ci − λ, 0})i∈N ) fail the
reasonable lower bound (see Figure 2).

The next bound is new to the literature. To motivate it, start from a problem (c,E) ∈
CN and consider a reference situation where each agent’s claim is equal to the smallest
claim in (c,E).9 In such situation, agents should be treated equally; if the endowment is
smaller than the common claim, equal division should prevail; if the endowment is greater
than the common claim, each agent should receive at least 1

n
th of the common claim. In

the problem (c,E), each agent’s claim is at least as large as in the reference situation,
hence her bound should not decrease. For each (c,E) ∈ CN , agent i’s min lower bound is
µi(c,E) = 1

n
min{{cj}j∈N , E}. The min lower bound is given by:

µ(c,E) = (µi(c,E))i∈N .

Now, we note two ways to determine which of two lower bounds is stronger. Each
defines a partial order on the space of rules. First, we compare, problem-by-problem, the
rights vectors of the lower bounds. If for each problem, the rights vector of one lower
bound dominates the rights vector of the other, then the former is stronger. Using this
comparison, minimal rights is neither weaker nor stronger than either the reasonable lower
bound or the min lower bound, but the min lower bound is weaker than the reasonable lower
bound. Graphically, this comparison corresponds to containment of the paths of acceptable
vectors (see Figure 3 (a)).

Second, we compare the sets of rules satisfying each of the two bounds. If the set of
rules satisfying one lower bound is contained in the set of rules satisfying the other, then
the former is stronger. Using this comparison, minimal rights is weaker than the min
lower bound, which is weaker than the reasonable lower bound.10 In fact, minimal rights is
vacuously satisfied by all rules. Graphically, this comparison corresponds to containment
of the paths of acceptable vectors restricted to the set of awards vectors. Given a lower
bound, its paths of acceptable vectors restricted to the set of awards vectors are its paths
of acceptable awards (see Figure 3 (b)).

3.1 Positivity, Strong Positivity, and conditional efficiency.

Now, we introduce some conditions on lower bounds. The first two conditions imply that
the total amount assigned by the lower bound is positive:

Positivity: For each non-degenerate problem (c,E) ∈ CN , b(c,E) ≥ 0.11

Strong positivity: For each non-degenerate problem (c,E) ∈ CN , each i ∈ N , if ci > 0
then bi(c,E) > 0.

8Dominguez and Thomson (2006) provide some general ways of identifying rules satisfying the reasonable

lower bound.
9The reference situation may not be a problem since the sum of the claims may be smaller than the

endowment. Reference to this situation can help determine the rights in the original problem.
10Even though the min lower bound is weaker than the reasonable lower bound, the proportional rule and

the constrained equal losses rule violate the min lower bound (see Figure 2).
11Recall that the vector inequality x ≥ 0 implies that: (i) for each i ∈ N xi ≥ 0, and (ii) x 6= 0.
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Figure 3: Comparing minimal rights to the reasonable lower bound. (a) Problem-by-problem

comparison. The bounds are non-comparable. For endowments smaller than E, the rights vectors of the
reasonable lower bound dominate the rights vectors of minimal rights; for endowments larger than E and
smaller than E′, there is no domination; for endowments greater than E′, the rights vectors of minimal

rights dominate the rights vectors of the reasonable lower bound. (b) Set of rules satisfying each bound. The
paths of acceptable awards of the reasonable lower bound are contained in the paths of acceptable awards
of minimal rights. Hence, the reasonable lower bound is stronger than minimal rights.

It is clear that strong positivity implies positivity. Both properties can be interpreted
as protecting agents from receiving nothing. The first protects the agents as a group,
the second protects each agent separately. Under this interpretation strong positivity is
of particular interest. If we interpret lower bounds as inefficient rules the properties can
be thought of as minimal efficiency requirements: a lower bound should assign a positive
amount whenever possible.12 It is easy to see that minimal rights and the min lower bound
fail positivity (and hence strong positivity). The reasonable lower bound satisfies strong
positivity. In two-agent problems so does the min lower bound.

When a problem is degenerate, there is no conflict among the agents. A lower bound
should distribute the endowment fully:

Conditional efficiency: For each degenerate problem (c,E) ∈ CN , b(c,E) = X(c,E).

Suppose we assign to each agent her right and revise the claims and the endowment
accordingly. Given a rights vector x, for each (c,E) ∈ CN , the x-partially resolved
problem is px(c,E) =

(

((c − x)), E −
∑

i∈N xi

)

.13 It defines the problem (c′, E′) where
(i) for each agent i ∈ N , the claim c′i is what remains of her initial claim after she is
assigned her right and (ii) E′ is the amount of the endowment remaining after assigning
their rights to the agents. Given a lower bound b, For each (c,E) ∈ CN , we abuse notation
and denote the b(c,E)-partially resolved problem, pb(c,E) ≡ pb(c,E)(c,E).

12For this interpretation to be valid, we should require that the lower bound assigns a positive amount to
each problem with a positive endowment.

13It is easy to see that the set of problems is closed under this operation.
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4 Extending a lower bound

Suppose we agree on a lower bound and find that, for some problem, the rights vector of its
partially resolved problem assigns a positive amount to at least one agent. In such situations
we can extend the lower bound by adding to the rights vector of the original problem the
rights vector of the revised problem. The recursive-extension of a bound is obtained by
repeatedly performing this operation.

Similarly, starting from a rule and a lower bound, we can construct a new rule in the
following way: for each problem, first assign to each agent her right, then apply the rule to
the revised problem.14 For some rule-bound pairs the constructed rule coincides with the
original rule. We say that the rule is “invariant under the assignment of the bound”.

In this section we show that, if a lower bound satisfies positivity, repeatedly assigning
the lower bound singles out the unique rule satisfying invariance under the assignment of
the bound. First, we formally define the recursive-extension of a lower bound, and illustrate
the process using the lower bounds in Section 3. Then, we define invariance under the
assignment of a bound. Finally, we state and prove our main theorem. We restrict attention
to continuous lower bounds. Similar results can be obtained for discontinuous bounds, but
the definition of the recursive-extension and the proofs are significantly easier for continuous
bounds.

4.1 Recursive-extension

Consider a lower bound and extend it according to the operation described above. Then,
extend the new lower bound using the same operation. The recursive-extension of the bound
is obtained by repeatedly extending a lower bound.

Definition 3. Given a lower bound b, let b0 ≡ b. For each (c,E) ∈ CN , and each k ∈ N,
the k-extension of b is the lower bound defined by:

bk(c,E) = bk−1(c,E) + bk−1(pbk−1

(c,E)).

It is clear that for each each (c,E) ∈ CN , the sequence {bk(c,E)} is increasing and
bounded. Thus, it has a limit, and this limit defines the rights vector assigned by the
recursive-extension of the bound to the problem (c,E).

Definition 4. Given a lower bound b, for each (c,E) ∈ CN , the recursive-extension of
b assigns the rights vector B(c,E), where:

B(c,E) = lim
k→∞

bk(c,E).

If a lower bound is continuous, it is easy to see that its recursive-extension is also
continuous.15 The next lemma provides an alternative way of obtaining the recursive-
extension of a lower bound.

14It is easy to see that this operation defines a rule. For a detailed study of this operation, with respect
to minimal rights, see Thomson and Yeh (2005).

15To prove this claim it suffices to define the operator T : B → B which maps each lower bound into its
2-extension. Then, show that recursive application of the operator defines a Cauchy sequence in the space
of continuous and bounded functions endowed with the sup-norm metric. Finally, note that this space is
complete, hence it contains all it’s limit points.
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Lemma 1. Let b be a lower bound and B its recursive-extension. For each (c,E) ∈ CN ,
B(c,E) satisfies the following two conditions:16

B(c,E) = b(c,E) + B
(

pb(c,E)
)

,

b(c,E) = 0 ⇒ B(c,E) = 0.

Moreover, if b is continuous, the recursive-extension of b is the unique lower bound satisfying
the conditions above.

We call the first condition the recursive condition, and the second the no start
condition.

Proof. The fact that the recursive-extension satisfies the conditions is straightforward. Con-
versely, we show that if b is continuous, it is the unique lower bound satisfying them.
Let B and B′ satisfy both conditions. Let (c,E) ∈ CN . Applying the recursive con-
dition to (c,E), we get B(c,E) − B′(c,E) = B(pb(c,E)) − B′(pb(c,E)). Recursively
applying the argument, we construct a bounded and decreasing sequence of problems
(ck, Ek) = pb(ck−1, Ek−1). This sequence has a limit (c,E) and, by continuity of B and B′,17

B(c,E) − B′(c,E) = B(c,E) − B′(c,E). We call the last equality condition (∗). Since the
sequence is convergent, b(ck−1, Ek−1) → 0 and, by continuity of b, b(c,E) = 0. Hence, by
no start, B(c,E) = 0 = B′(c,E). Substituting in condition (∗), we get B(c,E) = B′(c,E).
Since this was done for arbitrary (c,E) ∈ CN , B ≡ B′. Thus, there is a unique rule satisfying
both conditions.

Even though the recursive-extension of a lower bound is unique, there may be sev-
eral lower bounds which share the same recursive-extension. In particular, as Corollary 1
shows, if a lower bound is continuous, then its recursive-extension is also its own recursive-
extension.

Lemma 2. Let b be a continuous lower bound and B its recursive-extension. For each
(c,E) ∈ CN , B(pB(c,E)) = 0 and b(pB(c,E)) = 0.

Proof. Let (c,E) ∈ CN . By continuity, b(pB(c,E)) = limk→∞ b(pbk

(c,E)). By construction

of the recursive-extensions, {bk(c,E)}k∈N, limk→∞ b(pbk

(c,E) = 0. Hence b(pB(c,E)) = 0
and, by no start, B(pB(c,E)) = 0.

Corollary 1. Let b be a continuous lower bound and B its recursive-extension. Then, B is
its own recursive-extension.

Proof. Let (c,E) ∈ CN . By Lemma 2, B(pB(c,E)) = 0. Hence, for each (c,E) ∈ CN , and
each k ∈ N, Bk(c,E) = B(c,E), where Bk is the k-extension of B. Hence, B is its own
recursive-extension.

To illustrate the recursive-extension of a bound, we construct the extensions of minimal
rights and the min lower bound. For the reasonable lower bound, we refer to Dominguez
and Thomson (2006) for a deeper treatment.

16We abuse notation and write x = 0 for (x1, ..., xn) = (0, ..., 0).
17Recall that if a lower bound b is continuous then its recursive-extension B is also continuous.
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Proposition 1. The recursive-extension of minimal rights is minimal rights itself.

We use the fact that, for each problem, after assigning minimal rights and revising the
problem accordingly, minimal rights of the revised problem are equal to 0 (Thomson 2005a),
that is, for each each (c,E) ∈ CN , m(pm(c,E)) = 0.

Proof. Let M be the recursive-extension of minimal rights. Let (c,E) ∈ CN . By the
recursive condition, M(c,E) = m(c,E)+M(pm(c,E)). Since m(pm(c,E)) = 0, by no start,
M(pm(c,E)) = 0. Hence, M(c,E) = m(c,E).

The proof of Proposition 1 illustrates the use of no start. Without it, we cannot guaran-
tee that the recursive-extension of the revised problem is 0. Consider the following (discon-
tinuous) bound:18 let N = {1, 2}, c̄ = (2, 3), Ē = 1, and let A = {(c,E) ∈ CN | pm(c,E) =
(c̄, Ē)}. Define the bound M ′ as follows:

for each (c,E) /∈ A, M ′(c,E) = m(c,E),

for each (c,E) ∈ A, M ′(c,E) = m(c,E) + (.5, .5).

M ′ satisfies the recursive condition with respect to minimal rights, but fails no start.

The recursive-extension of the min lower bound does not coincide with itself. It assigns
to each agent, the minimum of the smallest claim and 1

n
th of the endowment. Several rules

satisfy this extension, but for two-agent problems, they coincide with the constrained equal
awards rule introduced in Section 3.

Proposition 2. The recursive-extension of the min lower bound assigns, to each agent, the
common amount λ ∈ R+, such that λ = min{{ci}i∈N , E

n
}.

Proof. The fact that all agents are assigned a common amount λ is a straightforward im-
plication of the fact that, for each problem, the min lower bound assigns equal rights to
all agents. To prove that λ = min{{ci}i∈N , E

n
}, note that, by claims boundedness and

feasibility, λ ≤ min{{ci}i∈N , E
n
}.

Let ν be the recursive-extension of the min lower bound. Let (c,E) ∈ CN . Since each
agent is assigned λ, (pν(c,E)) = ((ci − λ)i∈N , E − nλ). If λ < min{{ci}i∈N , E

n
}, then

1
n

min{{c′i}i∈N , E′} > 0, where (c′, E′) = pν(c,E). Hence, µ(pν(c,E)) > 0, contradicting
the conclusion of Lemma 2.

To see that, for two-agent populations, all rules satisfying the recursive-extension of
the min lower bound coincide with the constrained equal awards rule, consider a problem
(c,E) ∈ C{1,2}. Suppose, without loss of generality, that c1 < c2. If E ≤ 2c1, the rights
vector is efficient, and any rule satisfying the bound divides the endowment equally. If
E > 2c1, the bound assigns to each agent c1, thus any rule satisfying the bound fully
honors agent 1’s claim and, by efficiency, agent 2 gets the remainder. Thus, for each two-
agent problem, the awards vector assigned by a rule satisfying the recursive-extension of
the min lower bound is equal to the awards vector assigned by the constrained equal awards
rule (see Figure 4).

One may ask when does extending a lower bound single out a rule. The complete answer
is given by Theorem 1. For now, we note that minimal rights fails positivity and so does
the min lower bound, although, in two-agent problems, the latter satisfies it.

18A continuous example can be constructed, but the definition of the lower bound is more involved.
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Figure 4: Graphical representation of the recursive-extension of the min lower bound. (a) Path
of acceptable vectors. Many rules satisfy the recursive-extension of the min lower bound. (b) Path of
acceptable vectors. When N = {1, 2}, all rules satisfying the bound coincide with the constrained equal

awards rule.

4.2 An invariance requirement

Given a lower bound consider the requirement that a rule should be obtainable in two ways:

(i) applying the rule directly or,

(ii) first assigning the rights vector, and then applying the rule to the partially resolved
problem.

This property was introduced to the literature formulated to minimal rights (Curiel, Maschler,
and Tijs 1987). For two-agent problems, along with equal treatment of equals and claims
truncation invariance, this property formulated for minimal rights characterizes a rule
known as the contested garment rule (Dagan 1996). We apply the idea to any lower bound:

Definition 5. Given a lower bound b, a rule ϕ satisfies invariance under the assignment
of b, if for each (c,E) ∈ CN ,

ϕ(c,E) = b(c,E) + ϕ(pb(c,E)).

Many rules satisfy invariance under the attribution of minimal rights, but only one
satisfies invariance under the attribution of the reasonable lower bound (Dominguez and
Thomson 2006). One may ask when this invariance property yields a unique rule. Theorem 1
provides the complete answer. For now, we note that the former bound fails positivity while
the latter satisfies it.

To prove the main theorem, we need the following lemmata:
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Lemma 3. Let B be the recursive-extension of b. For each (c,E) ∈ CN , pB(c,E) =
pB(pb(c,E)).

Proof. Let (c,E) ∈ CN . Recall that, by the recursive condition, the recursive-extension
satisfies B(c,E) = b(c,E) + B(pb(c,E)).

Then,

pB(c,E) =

(

c − B(c,E), E −
∑

i∈N

Bi(c,E)

)

=

(

c − b(c,E) − B
(

pb(c,E)
)

, E −
∑

i∈N

bi(c,E) −
∑

i∈N

Bi

(

pb(c,E)
)

)

=

(

pb(c,E) − B
(

pb(c,E)
)

, (E −
∑

i∈N

bi(c,E)) −
∑

i∈N

Bi

(

pb(c,E)
)

)

= pB
(

pb(c,E)
)

.

The next lemma provides a simple and useful condition characterizing each lower bound
for which there is a unique rule satisfying it. If a unique rule satisfies a bound, then starting
from any problem and assigning the rights vector assigned by the bound, the partially
resolved problem is degenerate.

Lemma 4. Let b be a lower bound, the following statements are equivalent

(i) There is a unique rule satisfying b.

(ii) For each (c,E) ∈ CN , |X(pb(c,E))| = 1.

Proof. To prove that (i) implies (ii), assume that there exist (c∗, E∗) ∈ CN such that
|X(pb(c∗, E∗))| > 1. We show that at least two rules satisfy b. Let ϕ satisfy b, y = ϕ(c∗, E∗),
and x = (y − b(c∗, E∗)). Then, x ∈ X(pb(c∗, E∗)). Let x′ ∈ X(pb(c∗, E∗)) be such that
x′ 6= x and y′ = x′ + b(c∗, E∗). Then, y′ 6= y and y′ ∈ X(c∗, E∗). Let φ(c∗, E∗) = y′ and,
for each (c,E) 6= (c∗, E∗), let φ(c,E) = ϕ(c,E). Then, φ 6= ϕ and both ϕ and φ satisfy b.

Now we prove that, if for each (c,E) ∈ CN , |X(pb(c,E))| = 1, then there is a unique
rule satisfying b. Let (c,E) ∈ CN , ϕ a rule satisfying b, and x = ϕ(c,E) − b(c,E). By
claims boundedness, x ≤ c − b(c,E). Since ϕ satisfies b, x ≥ 0. Summing over agents,
∑

i∈N xi =
∑

i∈N ϕi(c,E) −
∑

i∈N Bi(c,E) = E −
∑

i∈N Bi(c,E). These three conditions
imply that x ∈ X(pb(c,E)). Since |X(pb(c,E)| = 1, x = X(pb(c,E)). Thus, ϕ(c,E) =
b(c,E) + X(pb(c,E)).

Corollary 2. Let b be a lower bound and ϕ the unique rule satisfying it. For each (c,E) ∈
CN ,

ϕ(c,E) = b(c,E) + X(pb(c,E).

Proof. Direct implication of the proof of Lemma 4.

We are now ready for the main theorem:
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Theorem 1. Let b be a continuous lower bound. The following conditions are equivalent:

(i) b satisfies positivity.

(ii) There is a unique rule satisfying the recursive-extension of b.

(iii) There is a unique rule satisfying invariance under the assignment of b.

Moreover, the rules in (ii) and (iii) coincide.

Proof. First, we show that (i) implies (ii). Let B be the recursive-extension of b. Let
(c,E) ∈ CN . By Lemma 2, b(pB(c,E)) = 0. Hence, by positivity, pB(c,E) is degenerate,
and therefore |X(pB(c,E))| = 1. Since the argument holds for arbitrary (c,E) ∈ CN , by
Lemma 4, there is a unique rule satisfying B.

Next, we prove that (ii) implies (iii), and that the unique rule satisfying the recursive-
extension of b coincides with the unique rule satisfying invariance under the assignment of
b. Let B be the recursive-extension of b and ϕ the unique rule satisfying B. First, we show
that ϕ satisfies invariance under the assignment of b. Then, we show that no other rule
does.

Let (c,E) ∈ CN . Since ϕ(c,E) is the unique rule satisfying B, by Corollary 2, ϕ(c,E) =
B(c,E) + X(pB(c,E)). By the recursive condition ϕ(c,E) = b(c,E) + B(pb(c,E)) +
X(pB(c,E)). By Lemma 3, ϕ(c,E) = b(c,E)+B(pb(c,E))+X(pB(pb(c,E))). By Corollary
2 applied to pb(c,E), ϕ(c,E) = b(c,E)+ϕ(pb(c,E)). Thus, ϕ satisfies invariance under the
assignment of b.

Now we prove that no other rule satisfies invariance under the assignment of b. Let
B be the recursive-extension of b, ϕ the unique rule satisfying B, and φ a rule satisfying
invariance under the assignment of b. Let (c,E) ∈ CN . Since φ satisfies invariance under the
assignment of b, φ(c,E) = b(c,E)+φ(pb(c,E). Repeated application of invariance under the
assignment of b yields φ(c,E) = B(c,E) + φ(pB(c,E)). By Lemma 4, |X(pB(c,E))| = 1.
Thus, φ(c,E) = B(c,E) + X(pB(c,E)). By Corollary 2, φ(c,E) = ϕ(c,E). Since the
argument holds for arbitrary (c,E) ∈ CN , φ ≡ ϕ.

Finally, we show that (iii) implies (i). Let ϕ be the unique rule satisfying invariance
under the assignment of b. Let (c̄, Ē) ∈ CN be non-degenerate. We show that b(c̄, Ē) ≥ 0.

Suppose, by contradiction, that b(c̄, Ē) = 0. Let x ∈ X(c̄, Ē) be such that x 6= ϕ(c̄, Ē).
Since (c̄, Ē) is non-degenerate, such x exists. Let A0 = {(c̄, Ē)}, and for each k ≥ 1, let
Ak = {(c,E) | pb(c,E) ∈ Ak−1}. It is easy to show that Ak−1 ⊆ Ak. Let A ⊆ CN be the
smallest set such that, for each k ∈ N, Ak ⊆ A. For each (c,E) ∈ CN define the rule φ by:

(c,E) ∈ A ⇒ φ(c,E) = b(c,E) + x,

(c,E) ∈ Ac ⇒ φ(c,E) = ϕ(c,E).

Then, φ 6= ϕ and φ satisfies invariance under the attribution of b, a contradiction with
uniqueness of such a rule. Thus, b(c̄, Ē) ≥ 0.

It is worth noting that, if a lower bound fails positivity, there are rules satisfying its
recursive-extension, but failing invariance under the assignment of the bound. For example,
consider minimal rights; as we have seen, minimal rights is its own recursive-extension
(Proposition 1). Moreover, all rules satisfy minimal rights. Hence, all rules satisfy the
recursive-extension of minimal rights. On the other hand, many rules fail invariance under
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the assignment of minimal rights. An example is the proportional rule. This example
shows that, if we drop positivity, satisfying the recursive-extension of a bound and satisfying
invariance under the assignment of the bound are not equivalent.

A straightforward corollary of Theorem 1 is that there is a unique rule satisfying invari-
ance under the assignment of the reasonable lower bound (Dominguez and Thomson 2006).
By the following corollary, we can also conclude that the recursive-extension of the reason-
able lower bound is such a rule.

Corollary 3. If a continuous lower bound b satisfies positivity and conditional efficiency,
then its recursive-extension is efficient. Thus, the recursive-extension of b defines the unique
rule satisfying invariance under the assignment of b.

Proof. Let b satisfy positivity and conditional efficiency, B its recursive-extension, and ϕ
a rule satisfying B. Let (c,E) ∈ CN . We show that B(c,E) = ϕ(c,E). By Lemma 2,
b(pB(c,E)) = 0. Hence, by positivity, |X(pB(c,E))| = 1. By conditional efficiency,
b(pB(c,E)) = X(pB(c,E)). Thus, B(pB(c,E)) = X(pB(c,E)). By Lemma 2, B(pB(c,E)) =
0. Thus, X(pB(c,E)) = 0. By Theorem 1, ϕ(c,E) = B(c,E) + X(pB(c,E)). Thus,
B(c,E) = ϕ(c,E).

This result can also be interpreted in the following way: suppose that a lower bound sat-
isfies conditional efficiency. Then, its recursive-extension “inherits” conditional efficiency.
Moreover, if the bound also satisfies positivity, its recursive-extension “inherits” efficiency.
In the next section we ask this sort of questions for some properties.

A converse statement of Corollary 3 holds by weakening conditional efficiency in the
following way: Let ε > 0. A lower bound b satisfies ε-conditional efficiency if, for each
degenerate problem (c,E) ∈ CN ,

∑

i∈N bi(c,E) ≥ εE. Clearly, if ε > 1 the condition cannot
be satisfied. If ε = 1 the condition corresponds to conditional efficiency. If ε < 1 the
condition is weaker than conditional efficiency. It states that, for a degenerate problem
with a positive endowment, the agent with a positive claim should receive a positive right.

Corollary 4. Let b be a continuous lower bound and ε > 0. If b satisfies ε-conditional effi-
ciency and positivity, then its recursive-extension is efficient. Conversely, if the recursive-
extension of b is efficient, then for some ε > 0, b satisfies ε-conditional efficiency and
positivity.

Proof. The proof of the first statement follows the same logic as Corollary 3. We prove
the converse statement. Let B be the recursive-extension of b. If B is efficient, there is a
unique rule satisfying B. By Theorem 1, b satisfies positivity. Assume, by contradiction,
that for each ε > 0, b fails ε-conditional efficiency. Then, there exists a degenerate problem
(c,E) ∈ CN such that b(c,E) = 0 and X(c,E) ≥ 0.19 By no start, B(c,E) = 0. Hence, B is
not efficient, contradicting our initial hypothesis. Thus, there is ε > 0 such that b satisfies
ε-conditional efficiency.

5 Inheritance of properties

If a lower bound is well-behaved, is its recursive-extension also well-behaved? Now, we intro-
duce some properties of good behavior of lower bounds, their desirability can be evaluated

19The existence of a degenerate problem (c, E) with b(c, E) = 0 is implied by the closedness of the set of
degenerate problems and the continuity of b.
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from different points of view: horizontal equity, monotonicity, and invariance properties.
These properties are used as tests of good behavior for the lower bounds. Many desirable
properties for rules are also meaningful and desirable for lower bounds. Conversely, many
desirable properties for lower bounds are desirable for rules. For instance, in most appli-
cations, it is desirable that agents with equal claims be treated equally; equal treatment of
equals says that a rule assigns equal awards to agents with equal claims; in such situations,
it also seems reasonable that a lower bound assigns equal rights to those agents. We intro-
duce some of the properties that have been discussed in the literature for rules, and note
which of the lower bounds introduced in Section 3 satisfy them. Straightforward proofs are
omitted.

Then, we ask whether the recursive-extension of a lower bound satisfies the same prop-
erties as the original bound. For some properties this is the case, and we say that the
properties are inherited by the recursive-extension. Some properties are inherited on
their own (directly). Other properties, which are not directly inherited, are inherited if
other properties are imposed as well. We call such cases assisted inheritance,20 since the
additional properties imposed assist the original property to be inherited. We undertake a
systematic investigation of inheritance of some properties. Some proofs are straightforward
and we do not provide them. We relegate most examples for negative results to the ap-
pendix. It is worth noting that the properties are inherited by the recursive-extension, and
not necessarily by rules satisfying the recursive-extension. When a lower bound satisfies
positivity, the unique rule satisfying the recursive-extension usually inherits properties.21

Definition 6. A property is inherited (by the recursive-extension of a bound) if, whenever
a bound satisfies the property, its recursive-extension also does.

We start with properties that can be interpreted as expressing the idea of horizontal
equity. First, agents with equal claims should be assigned equal rights:

Equal treatment of equals: For each (c,E) ∈ CN , and each {i, j} ∈ N , if ci = cj ,
bi(c,E) = bj(c,E).

Minimal rights, the reasonable lower bound, and the min lower bound satisfy equal
treatment of equals.

For each problem, a bound which satisfies equal treatment of equals assigns equal rights
to agents with equal claims. In the revised problem, their claims are equal and they are as-
signed equal rights. Thus, the revised bound satisfies equal treatment of equals. A recursive
argument shows that equal treatments of equals is inherited.

The same logic can be used to prove inheritance of most properties: we start with a
problem that satisfies the hypotheses of the property, assign the rights vector and revise
the problem accordingly; we check whether the conclusions of the property imply that the
revised problem satisfies its hypotheses. If it does, we add the rights vector of the revised
problem to the rights vector of the original problem, and check if the revised bound satisfies

20We borrow the term “assisted” from Hokari and Thomson (2006). They use the expression in their study
of consistency and its implications. A property is lifted by consistency if, when the property is satisfied by
a rule for two-agent populations, it is also satisfied for all populations provided the rule is consistent. They
call assisted lifting if a property is not lifted by consistency on its own, but it is lifted provided that the rule
satisfies some additional properties.

21Recall that by Corollary 4, if for some ε > 0 a lower bound satisfies positivity and ε-conditional efficiency,
then its recursive-extension defines a rule and it inherits the properties. For some properties, even if a
positive lower bound fails ε-conditional efficiency, the unique rule satisfying its recursive-extension inherits
the properties.
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the conclusions of the property. If it does, a recursive argument proves inheritance of the
property.

The next property implies equal treatment of equals. The lower bound should not depend
on the names of the agents. The lower bounds introduced in Section 3 satisfy this property.
Denote by ΠN the set of permutations on N :

Anonymity: For each (c,E) ∈ CN , and each permutation π ∈ ΠN , b(π(c), E) =
π(b(c,E)).

It is easy to see that anonymity is inherited. But not all properties are inherited and
careful examination is required. The next property also implies equal treatment of equals
but it is logically independent of anonymity. If agent i’s claim is at least as large as agent
j’s, agent i’s right should be at least as large as agent j’s (Aumann and Maschler 1985).

Order preservation: For each (c,E) ∈ CN , and each pair {i, j} ⊆ N , if ci ≥ cj ,
bi(c,E) ≥ bj(c,E).

In fact, as the following example shows, not even the basic property of order preservation
is inherited:

Let N = {1, 2}. Consider the bound b defined as follows: for the problem (c̄1, c̄2, Ē) =
(2, 2.5, 2.5), b(2, 2.5, 2.5) = (0, 1). For the problem (c̄′1, c̄

′
2, Ē

′) = (2, 1.5, 1.5), b(2, 1.5, 1.5) =
(1.5, 0). For each other problem (c,E) ∈ CN , b(c,E) = 0. The recursive-extension of the
bound is: B(2, 2.5, 2.5) = (1.5, 1), B(2, 1.5, 1.5) = (1.5, 0), and for each other problem
(c,E) ∈ CN , B(c,E) = 0. Then, b satisfies order preservation and B fails it. Hence, the
property is not inherited.

In the literature, order preservation (of awards) is usually imposed together with a dual
property on the losses experienced by the agents.22 Given a problem and an awards vector,
each agent’s loss is equal to the difference between her claim and her award. In our setting,
a lower bound (on awards) has a dual lower bound on losses. Given a lower bound b, for
each (c,E) ∈ CN , bd(c,E) = c − b(c,E) defines such a bound. Agents with smaller claims
should be assigned smaller lower bounds on losses:23

Order preservation of losses: For each (c,E) ∈ CN , and each pair {i, j} ⊆ N , if
ci ≥ cj , then, bd

i (c,E) ≥ bd
j (c,E).

An example dual to the one above shows that order preservation of losses is not inher-
ited. When a lower bound satisfies both order preservation and order preservation of losses
we say that it satisfies full order preservation. The three bounds presented in Section 3
satisfy full order preservation.

Given that the above example is not an intuitive lower bound and, in particular, fails
order preservation of losses, one may wonder if there are well-behaved bounds for which
the property is not inherited. The next proposition shows that this is not the case.

Proposition 3. Full order preservation is inherited.

Proof. Let b satisfy full order preservation. For each (c,E) ∈ CN let b′(c,E) = b(c,E) +
b(pb(c,E)). We show that b′ satisfies full order preservation. Let (c,E) ∈ CN , and {i, j} ⊆
N . Without loss of generality assume ci < cj . By full order preservation, bi(c,E) < bj(c,E)
and ci − bi(c,E) < cj − bj(c,E). Consider the problem (c′, E′) = pb(c,E). By order
preservation of losses, c′i < c′j . By full order preservation, bi(c

′, E′) < bj(c
′, E′) and c′i −

bi(c
′, E′) < c′j − bj(c

′, E′). Then, b′i(c,E) < b′j(c,E) and ci − b′i(c,E) < cj − b′j(c,E). Hence,

22For a systematic treatment of duality see Thomson and Yeh (2005).
23A smaller lower bound on her losses is better for an agent. Order preservation of losses is a way to

prevent agents with smaller claims form being treated too harshly.
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b′ satisfies full order preservation. A recursive argument shows that full order preservation
is inherited.

We turn to monotonicity properties. They are relational conditions. If an agent’s claim
increases, her right should not decrease:

Claims monotonicity: For each (c,E) ∈ CN , and each i ∈ N , if ci < c′i, bi(c,E) ≤
bi(c

′
i, c−i, E).24

We may also be interested in how an increase in an agent’s claim affects the rights of
the others. When an agent’s claim increases, it is natural to require that the other agent’s
rights should not increase:

Others-oriented claims monotonicity: For each (c,E) ∈ CN and each i ∈ N , if
ci < c′i, bN\{i}(c,E) ≥ bN\{i}(c

′
i, c−i, E).

When the endowment increases, agents should not be assigned smaller rights:
Resource monotonicity: For each (c,E) ∈ CN , each i ∈ N , and each E′ < E,

b(c,E′) ≤ b(c,E).
The three bounds presented in Section 3 satisfy claims monotonicity and resource mono-

tonicity. The min lower bound does not satisfy others-oriented claims monotonicity, but
the other two bounds do.

Most monotonicity properties are not directly inherited. In the Appendix, we provide
examples of bounds to show these negative results. The intuition for the failures is the
following: start with a pair of problems (c,E) and (c̄, Ē) related as in the hypotheses of
the property; assign the rights vector and revise the problems accordingly; since, for each
problem, the claims and the endowment are revised, the resulting pair of problems may
fail the monotonicity hypotheses. In this case, the lower bound can assign a rights vector
that fails the monotonicity conclusions for the original problem, and when summing the
rights vectors of the two problems, the resulting revised bound can fail the monotonicity
conclusions.

An interesting question is whether or not monotonicity properties are inherited when
several of them are imposed at the same time, by bounding the gains and losses from changes
in the data,25 or when dual monotonicity properties on the losses are imposed. As we saw
for order preservation, its dual property assisted its inheritance. Moreover, as with most
dual properties, dual monotonicity properties have intuitive appeal. We conjecture that,
if “enough monotonicity” is imposed, a positive answer can be obtained. In fact, for the
reasonable lower bound, positive answers for inheritance of several monotonicity properties
exist (Dominguez and Thomson 2006).

We turn to invariance properties. Since an agent cannot get more than the endowment,
the rights vector should not be affected if we truncate the claims at the endowment. All
three bounds in Section 3 satisfy the property:

Claims truncation invariance: For each (c,E) ∈ CN b(c,E) = b(t(c,E), E).
For invariance under claims truncation we have a positive inheritance result:

Proposition 4. Invariance under claims truncation is inherited.

24Let (c, E) ∈ CN , and N ′ ⊆ N . The vector cN′ is the vector c restricted to the population N ′. The
vector c−i is the vector c restricted to the population N \ {i}. The vector (cN\N′ , c′

N′ ) is the vector c where
the N ′th coordinates have been replaced by c′

N′ .
25Bounds on the gains and losses from changes in the data are intuitive. For instance, when an agents’

claim increases, we could require that her right does not increase by more than the increase in her claim.
Some bounds on gains and losses can be found in Thomson (2005a).
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Proof. Let b satisfy invariance under claims truncation. Let (c,E) ∈ CN . Let c̄ = t(c,E)
denote the vector of truncated claims and (c̄, Ē) = (t(c,E), E) the truncated problem. By
invariance under claims truncation,

b(c,E) = b(c̄, Ē). (1)

Let (c′, E′) = pb(c,E) and (c̄′, Ē′) = pb(t(c,E), E) denote the b-partially resolved problems.
We claim that (t(c′, E′), E′) =

(

t(c̄′, Ē′), Ē′
)

. Hence, by invariance under claims truncation
applied to both problems,

b(c′, E′) = b(c̄′, Ē′). (2)

To prove the claim, we first note that, by definition, E = Ē. Hence, by (1), E′ = Ē′.
Now we show that for each i ∈ N , ti(c

′, E′) = ti(c̄
′, Ē′). Let i ∈ N . We distinguish two

cases:

(i) If ci ≤ E, then c̄i = ci and ci − bi(c,E) = c̄i − bi(c,E). Using (1), ci − bi(c,E) =
c̄i − bi(c̄, Ē). Hence, c′i = c̄′i, and since E′ = Ē′, by definition of the truncation
operator, ti(c

′, E′) = ti(c̄
′, Ē′).

(ii) If E < ci, then E −
∑

j∈N bj(c,E) < ci − bi(c,E). Hence, E′ < c′i and ti(c
′, E′) = E′.

We call the last equality condition (∗). Moreover, E < ci implies c̄i = E. Since
E = Ē, we have c̄i − bi(c̄, Ē) = Ē − bi(c̄, Ē) ≥ Ē −

∑

j∈N bj(c̄, Ē). Hence, c̄′i ≥ Ē′ and

ti(c̄
′, Ē′) = Ē′. By condition (∗) and since E′ = Ē′, ti(c̄

′, Ē′) = ti(c
′, E′).

This completes the proof of the claim.

Now, summing equations (1) and (2),

b′(c,E) = b(c,E) + b(c′, E′) = b(c̄, Ē) + b(c̄′, Ē′) = b′(t(c,E), E).

Hence b′ satisfies invariance under claims truncation. A recursive argument shows that
invariance under claims truncation is inherited.

A direct corollary of Proposition 4 is that the unique rule satisfying the reasonable lower
bound satisfies invariance under claims truncation (Dominguez and Thomson 2006).

Appendix

Examples of inheritance failure for monotonicity properties.
We provide a two-agent example for claims monotonicity. The bound satisfies the prop-

erty, but its recursive-extension fails it. For two-agent problems claims monotonicity and
others-oriented claims monotonicity are equivalent. Hence, this example also shows inheri-
tance failure of others-oriented claims monotonicity. We provide the rights vectors assigned
by the bound and by its recursive-extension for selected problems. The bound should be
defined for all problems in a way that satisfies the property of interest. In the tables, the
problems (c,E) and (c̄, Ē) are the initial problems, and they satisfy the monotonicity hy-
potheses. The problems (c′, E′) and (c̄′, Ē′) are the revised problems pb(c,E) and pb(c̄, Ē)
respectively.
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1. Claims monotonicity and others oriented claims monotonicity :

(c1, c2, E) (30, 90, 100) (c̄1, c̄2, Ē) (30, 100, 100)

b(c1, c2, E) (10, 30) b(c̄1, c̄2, Ē) (10, 45)

(c′1, c
′
2, E

′) (20, 60, 60) (c̄′1, c̄
′
2, Ē

′) (20, 55, 45)

b(c′1, c
′
2, E

′) (10, 50) b(c̄′1, c̄
′
2, Ē

′) (20, 25)

B(c1, c2, E) (20, 80) B(c̄1, c̄2, Ē) (30, 70)

B(c′1, c
′
2, E

′) (10, 50) B(c̄′1, c̄
′
2, Ē

′) (20, 25)

2. Resource monotonicity :

(c1, c2, E) (30, 90, 100) (c̄1, c̄2, Ē) (30, 90, 110)

b(c1, c2, E) (10, 30) b(c̄1, c̄2, Ē) (15, 75)

(c′1, c
′
2, E

′) (20, 60, 60) (c̄′1, c̄
′
2, Ē

′) (15, 15, 20)

b(c′1, c
′
2, E

′) (20, 40) b(c̄′1, c̄
′
2, Ē

′) (10, 10)

B(c1, c2, E) (30, 70) B(c̄1, c̄2, Ē) (25, 85)

B(c′1, c
′
2, E

′) (20, 40) B(c̄′1, c̄
′
2, Ē

′) (10, 10)
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