The Rules Committee has long played a key role in the American legislative process through its ability to craft special amendment rules in the U.S. House. This article develops and tests a formal model of policy-making in Congress, highlighting the central role of the Rules Committee. This model generates simple conditions under which restrictive and nonrestrictive procedures will be used. It also provides a new view of restrictive procedures, one which sees restrictive amendment rules as devices for securing noncentrist policy outcomes on the Floor of the House. Evidence based on rule assignments in the Ninety-fourth through Ninety-eighth Congresses supports the claim that the preferences of the Rules Committee should be incorporated in any attempt to understand the pattern of restrictive rules in the House.

1. INTRODUCTION

The Rules Committee has long played a key role in the American legislative process (Alexander 1916; Hasbrouck 1927; Robinson 1963; Sinclair 1983). Its ability to schedule legislation and to craft special rules for Floor consideration of bills is so important that failure by the Rules Committee to act on a bill typically ensures that the bill will not be considered (Oleszek 1989, 122). Special rules crafted by the Rules Committee do more than ensure consideration of a bill, however: these rules can also limit debate, waive points of order, restrict admissible amendments, and even rule out amendments altogether. These powers have a large impact on the sorts of policies produced in the House, and have made the Rules Committee one of the most prestigious and sought-after assignments in the House (Mayhew 1974; Munger 1988, 325; Smith and Deering 1984, 91).

Much of the existing formal literature on restrictive rules has tended to downplay the importance of the Rules Committee as a legislative actor. Distributive theories suggest that restrictive rules enforce cross-jurisdictional bargains between
committees, but no distributive model explicitly analyzes the endogenous choice of amendment rules (see, e.g., Baron and Ferejohn 1989a, 1989b; Fiorina 1981; Shepsle and Weingast 1984; Weingast and Marshall 1988). Informational theories suggest that restrictive rules promote specialization and information transmission by committees (Gilligan and Krehbiel 1987, 1989a, 1989b; Krehbiel 1991). These models do explicitly analyze the endogenous choice of amendment rules, but in all the informational models the strategic actor assigning the rule is assumed to be the perfect agent of the Floor. Thus, despite the substantial differences between distributive and informational theories, they are both in agreement in seeing the Rules Committee as an institutional feature of the House that, in essence, solves other people's problems.

There is, however, ample evidence that the Rules Committee does not act in this manner. The history of the committee, from Czar Thomas Brackett Reed to Uncle Joe Cannon to Judge Howard Smith, is replete with examples of Rules Committee members using their institutional position to further their own or their party's policy views (Atkinson 1911; Jones 1968). More recently, empirical analysis of voting behavior in contemporary congresses suggests that the preferences of the Rules Committee are often significantly more liberal than the preferences of the Floor median (Londregan and Snyder 1992). Not coincidentally, Rules Committee members are also more likely to support their party (Matsunaga and Chen 1976; see also Price 1989, 422). This should hardly be surprising, since the Speaker (with Democratic caucus approval) has since 1975 been empowered to select all the Democratic members of the Rules Committee. As a result, the House Committee on Rules has been characterized for the postreform House as an essential arm of the majority party leadership (Kiewiet and McCubbins 1991; Oppenheimer 1977; Rohde 1991; Sinclair 1983, 77–85; Smith 1989, 78). If the Rules Committee is anyone's selfless agent, at least in the postreform era, it is of the majority party leaders, and not of the committee or the median legislator.

Only two formal models have attempted to incorporate the Rules Committee as an actor autonomous of either the committee or the Floor: these are the models of Shepsle (1986, 158–63) and Cox and McCubbins (1993, 292–93).1 The former model makes the restrictive assumption that the committee, the Rules Committee, and the status quo are all on the same side of the Floor median. As we show below, this assumption sharply limits the intuitions that we can obtain about the circumstances under which the Rules Committee will prefer closed versus open rules.

Cox and McCubbins present a model similar in structure to our own. As in our model, they allow the location of all three actors relative to the status quo to vary.

1While this article was in the review process, Garry Young sent us a copy of his work on rule assignment (Young 1994). Young's results also point to the importance of Rules Committee preferences in the rule assignment process. While there are some differences between our results and his, it is important to note that he extends the model to cover multiple referral. He also provides independent empirical support for the influence of Rules Committee position on rule assignment, using a multidimensional scaling technique different from the Londregan and Snyder (1992) measure we use here.
However, given their substantive focus on scheduling rather than on rule assignment, they do not solve for the full equilibrium of the model. In particular, they do not solve the game for the equilibrium committee proposal. Our ability to pin down committee proposals provides us with a policy-rational account of committee position-taking (Mayhew 1974). That is, we are able to show why it is rational for committees to make proposals that are either shot down by the Rules Committee or drastically amended on the Floor.

Our main contribution, however, concerns rule assignment. Our model sees restrictive rules as procedures that permit members of the Rules Committee and members of the substantive committees to secure noncentrist policy outcomes on the Floor of the House. The critical factor determining whether such noncentrist policies can occur is the precise spatial relationship of the substantive committee and the Rules Committee to the Floor. When the Rules Committee and the substantive committee are on opposite sides of the median legislator on the Floor, they will disagree over the direction in which policies should diverge from the centrist outcome. It is in such cases that open rules will occur. By contrast, when the Rules Committee and the substantive committee are on the same side of median legislator on the Floor, they will agree on the desirable direction of policy from the Floor median and will be able to ensure a noncentrist outcome, either through gatekeeping or through the use of a closed rule. This result provides a new rationale for restrictive rules, one that differs from both distributive theories (which see restrictive rules as techniques for maintaining vote trades between committees whose preferences differ a great deal from those of the Floor) and informational theories (which argue that restrictive rules will be assigned to bills from committees whose preferences are similar to the Floor).

In addition to developing the formal model, we also subject the results to an empirical test using data on committee positions and rule assignments in the Ninety-fourth through Ninety-eighth Congresses. Three findings are worth reporting. First, we find that the relative location of the Rules Committee in relation to the median legislator and the substantive committee has the expected effect on the observed assignment of restrictive rules. Second, we find that preference outlying status of committees, a central variable in the literature, is generally insignificant. Finally, and most compellingly, our results show a distinct break in the pattern of rule assignment from the Ninety-fifth to the Ninety-sixth Congress. Before this break, the informational theory outperforms our model. After this break, our theory is stronger. The break in the data coincides exactly with a change in the composition and leadership of the Rules Committee, a result which reinforces the importance of understanding the relationship between the preferences of the Rules Committee and those of the Floor in understanding the legislative process.

The theoretical and empirical results suggest that the relationship between the Rules Committee, the Floor, and the substantive committee is thus capable of historical variation, and that changes in legislative behavior can be understood by investigating changes in the spatial relationship of these three actors. By ignoring the
changing nature of the Rules Committee over the course of the 1980s, the existing theoretical accounts of restrictive rules are incomplete. By reincorporating the Rules Committee into models of the legislative process, we hope to focus more attention on this important legislative actor.

The article is organized in seven sections. In section 2 we present the notation and basic model. Section 3 presents the unique subgame perfect equilibrium of the game. The spatial intuition behind the model is presented in section 4. In section 5, we discuss the statistical test of our theory. Section 6 considers some objections to the model, and some suggestions for future work. In section 7 we conclude the piece.

2. NOTATION AND MODEL

We model the legislative process using a simple unidimensional policy space with three actors: the substantive Committee, the Rules Committee, and the median legislator on the Floor. Each of these has continuous and strictly convex preferences over the unidimensional policy space X, with ideal points represented by x_C for the Committee, x_R for Rules, and x_F for the Floor. These assumptions are sufficient to guarantee that preferences are representable by a continuous and strictly quasi-concave utility function $U_i : X \to \mathbb{R}$. Let $P_i(x)$ be the set of policies that i weakly prefers to x, $P_i(x)$ be the set of policies that i strictly prefers to x, and $I_i(x)$ be the set of policies that leave i indifferent. We sometimes write $x >_i y$ if $x \in P_i(y)$, $x \gg_i y$ if $x \in R_i(y)$, and $x \sim_i y$ if $x \in I_i(y)$. We also assume that there is some status quo point x_s. A list of these four locations (x_C, x_R, x_F, x_s) is referred to as a legislative profile. We impose only two conditions on each legislative profile:

(i) the ideal points of all three agents are distinct (i.e., $x_C \neq x_R, x_R \neq x_F, x_F \neq x_C$), and
(ii) the ideal point of each agent is distinct from the status quo ($x_j \neq x_s, j = C, R, F$).

Condition (i) represents our substantive interest in the role played by a Rules Committee that differs from both committees and the Floor median. Without this condition, the results of our model would be quite different. For example, if the ideal point of the Rules Committee were the same as the Floor, there would never be any closed rules. Of course, our approach could easily be extended to cases where the ideal points are not distinct. Condition (ii) is relatively innocuous. Let W designate the set of all legislative profiles that satisfy these two conditions, the generic element of which is w.

2The assumption that the Committee, the Rules Committee, and the Floor are unitary actors is made without loss of generality. No result would change if we assumed that these legislative bodies were composed of a set of individuals with single-peaked preferences who made choices by majority rule.

3Since our model, as we indicate below, allows $C, R, and F$ the power to maintain the status quo, having an agent whose ideal point is the status quo will guarantee the status quo as an outcome. We concentrate on the more interesting (and likely) cases where the agents are not perfectly happy with the status quo.
We model the legislative process as a two-stage game. The game begins with the Proposal Stage. In this stage, the Committee makes the choice either of gatekeeping (GK) or of making a proposal of some point in \(X\). A Committee proposal strategy is thus a mapping \(x_B: W \rightarrow X \cup \{\text{GK}\}\). If \(x_B(w) = \text{GK}\), then the outcome is the status quo point, \(x_0\). If \(C\) makes a proposal (say \(x_B(w) = y\)), the game moves to the Procedural Stage. Where there is no confusion we suppress the dependence of \(x_B\) on \(w\).

The second stage of the game is the Procedural Stage. In that stage, the Rules Committee has the choice of either selecting the open rule (\(r(x_B) = 0\)), selecting the closed rule (\(r(x_B) = C\)) or denying a rule (\(r(x_B) = D\)). The Rules Committee procedural strategy is thus a mapping \(r: X \rightarrow \{0, C, D\}\). If the Rules Committee denies a rule, the game is over and the outcome is \(x_0\).

We do not explicitly model strategic behavior on the Floor. Instead, we assume that if the Rules Committee selects an open rule, the outcome of the game is \(x_F\), and if the Rules Committee selects a closed rule, the outcome is \(x_B\) if \(x_B \in R_F(x_0)\) and \(x_0\) if \(x_B \notin R_F(x_0)\). Thus, we assume that when the Floor is indifferent between the status quo and the committee proposal under a closed rule, the Floor will accept the proposal. While we have abstracted from the strategic situation on the Floor, the outcomes we have assumed for voting on the Floor under the rule assigned are standard in the literature (see, e.g., Shepsle 1979; Denzau and Mackay 1983).

All players are assumed to know the preferences of the other agents as well as the choices made by players earlier in the game. We further assume that the structure of the game is common knowledge among the players. Since the game is noncooperative, and since we assume that rational players will not be deterred by noncredible threats, we concentrate on subgame perfect equilibrium (Selten 1975). This rules out, for example, behavior in which the Rules Committee always receives its ideal point because it threatens to deny a rule to any bill not yielding its ideal policy.

In a game of complete and perfect information, subgame perfection yields a unique equilibrium if the game is finite and if agents are not indifferent between any two terminal nodes of the game. In our game, however, such indifference often arises. We therefore assume that players will not play weakly dominated strategies. This restriction is sufficient to generate a unique subgame perfect equilibrium. Formally, a subgame perfect equilibrium in our model is a pair \((x_B^*, r^*(x_B))\), where \(x_B^*\) is the equilibrium proposal of the Committee and \(r^*(x_B)\) is the equilibrium action selected by Rules. We denote the policy resulting from equilibrium play as \(x^*\).

In section 6 we take up some of the issues involved in modelling the Floor stage.

For example, there are often multiple proposals the Committee could make which would all lead to the open rule and to the same outcome \(x_F\). A committee can also be indifferent between closing the gate or making a proposal knowing that the proposal will be denied a rule by the Rules Committee.
3. Formal Results

Once weakly dominated strategies are eliminated, our game has a unique sub-game perfect equilibrium, characterized in Proposition 1. The proof of this proposition is contained in the Appendix (which also contains Lemma 1, the best response for the Rules Committee).

Proposition 1

Let \(\hat{x} = \arg \max_{x \in Z} U_c(x) \) where \(Z = R_R(x_o) \cap R_R(x_F) \cap R_F(x_o) \).

Let \(\bar{x} = \arg \max_{x \in R_o(x_o)} U_c(x) \).

The unique subgame perfect equilibrium of the game is

1. \((x_B^* = \hat{x}, r^*(x_B^*) = C) \) if (i) \(\hat{x} \neq x_F \), (ii) \(\hat{x} \neq x_o \), and (iii) \(\hat{x} >_C x_o \) (Closed Rule Case)
2. \((x_B^* = \hat{x}, r^*(x_B^*) = O) \) if (i) \(\hat{x} = x_F \) and (ii) \(\hat{x} \geq_C x_o \) (Open Rule Case)
3. \((x_B^* = \hat{x}, r^*(x_B^*) = D) \) if (i) \(\hat{x} = x_o \) and (ii) \(x_F \geq_C \hat{x} \) (Deny Case)
4. \((x_B^* = GK) \) in all remaining cases (Gatekeeping Case).

Despite the innumerable possible locations of the status quo and the three actors, only four basic outcomes are possible (described in the parentheses above). Either the committee makes a proposal receiving the closed rule, the committee makes a proposal receiving the open rule, the committee makes a proposal that is denied a rule, or the committee makes no proposal at all.

Case 1 of the Proposition introduces the first class of equilibrium Committee proposals, designated by \(\hat{x} \). By Lemma 2 in the Appendix, proposals that could receive closed rules and pass on the Floor in equilibrium must be chosen from the set \(Z \), which contains all proposals that will pass on the Floor and that are preferred by the Rules Committee to both the status quo (so the Rules Committee will not deny a rule) and the Floor median (so the Rules Committee will not grant an open rule). The proposal \(\hat{x} \) is simply the optimal proposal for the Committee from the set \(Z \). Since committees that make proposals (as we shall show) always take the Floor's preferences into account, we refer to \(\hat{x} \) as the optimal “Rules Committee-constrained proposal,” in that the Committee takes into account the preferences of the Rules Committee as well as the Floor in making its proposal. In Case 1, this proposal is preferred by the Committee to both the Floor Median and the status quo, explaining the Committee's willingness to forego both gatekeeping as well as other proposals which the Committee might have made.

Case 2 characterizes the set of situations in which the Committee makes a proposal receiving the open rule, with the final policy outcome being the ideal point of the median voter of the legislature. This case also introduces the second class of
proposals, designated by \(\tilde{x} \). The proposal \(\tilde{x} \) is defined to be the best outcome that the Committee could achieve under a closed rule on the Floor (since \(\tilde{x} \in R_F(x) \)). We refer to this as the optimal "Floor-constrained proposal." Note that proposals in the class need not (in fact will not) be assigned a closed rule (as are Rules Committee-constrained proposals). In the set of situations characterized by Case 2, condition (i) implies that a Committee attempting to gain both a closed rule from the Rules Committee and passage on the Floor can do no better than the Floor median. Since the Committee can do no better than the Floor median under a closed rule, the Committee will make a proposal that will receive the open rule (because by (ii), the Committee weakly prefers the Floor median to the status quo). The Committee does not, however, make just any proposal receiving the open rule. Instead, it guards against the possibility that the Rules Committee might decide to assign a closed rule. It does so by making a proposal which, while receiving the open rule, also maximizes the Committee's utility in the case where a closed rule is assigned. That is, the Committee plays its weakly dominant strategy.

Case 1 and Case 2 exhaust the situations in which policy change will occur. The next two cases characterize the situation in which the status quo remains in place. Case 3 provides the conditions under which, in equilibrium, the Committee makes a proposal, but the proposal is denied a rule. In this situation, the optimal Rules Committee-constrained proposal is no better (in terms of utility) than the status quo. The Committee, however, has nothing to lose and everything to gain (say, if the Rules Committee does happen to assign an open rule) by going ahead with a proposal and forcing the Rules Committee to deny a rule. Thus, the Committee makes the optimal Floor-constrained proposal which is denied a rule in equilibrium.\(^6\)

Case 4 presents the conditions under which the Committee decides not to propose a policy at all, but rather to engage in gatekeeping. The intuition behind gatekeeping is straightforward. By condition (i), if a proposal by the Committee receives a closed rule, then the best possible outcome for the Committee is no better than the status quo. By condition (ii), if a proposal by the Committee receives an open rule, then the Committee is worse off than was the case with the status quo. Making a proposal, then, can never make the Committee better off and may make the Committee worse off. Thus, the Committee will close the gates.

\(^6\)The weak dominance results hinge on there being no opportunity cost to committee proposals. The introduction of a small opportunity cost would alter only the strategies adopted by the actors, and not the final policy outcome. To see this, note that the introduction of a cost to proposals would make a difference only in cases where it is a weakly dominant strategy for the committee to propose rather than to gatekeep, but in such situations, the Rules Committee would deny a rule anyway (thus retaining the status quo). For large enough opportunity costs, the committee would never make a proposal. It would be straightforward to modify the model to include opportunity costs.
Since our emphasis in this article is on the assignment of rules, in the Appendix we prove the following useful corollary to Proposition 1.

Corollary

A necessary condition for an open rule to occur in equilibrium is that \(x_F \) is located between \(x_C \) and \(x_R \).

That is, whenever the Committee and the Rules Committee are on the same side of the Floor, the Rules Committee will either deny a rule or assign a closed rule. When the Floor is between the Rules Committee and the Committee, there will always be locations of the status quo which produce an open rule. Thus we should expect to see more open rules when the Floor lies between the Committee and the Rules Committee.

4. Interpreting the Model

Proposition 1 characterizes the subgame perfect equilibrium for each possible configuration of preferences and location of the status quo. A useful way to draw out the intuitions behind these results is to depict spatially the various configurations and locations, and the resulting equilibria. We have done this in figure 1a through figure 1c, dividing the line in each figure into various regions where the status quo might lie. Underneath each region we have indicated the behavior that occurs in equilibrium, as well as the case from Proposition 1 characterizing this behavior. Using these diagrams, we show the conditions under which the Committee makes a proposal receiving a restrictive rule, and thus indicate precisely how restrictive rules can be used by the Rules Committee and the Committee to secure noncentrist outcomes. We also show how the model informs our understanding of committee behavior.

4.1 Restrictive Rules and Noncentrist Outcomes

We have argued in the introduction that restrictive procedures are used to preserve noncentrist policy outcomes from Floor amendment. To see how this argument emerges from our model, consider the regions in figure 1a through figure 1c in which the proposal is \(\hat{x} \) and the rule is closed (so that Case 1 applies). In figure 1a, for example, if the status quo is just to the right of the Rules Committee (such as point \(x_i \)), then \(\hat{x} \) (derived from the ideal points of the three agents and the location

7 Two comments on these figures. First, while they add geometric intuition to the results, the figures by themselves cannot indicate the more general logic unifying all the different types of behavior and outcomes that occur in equilibrium (for example, the unifying logic behind the set of closed rule cases). Second, while in these figures we assume (for simplicity) that the preferences of all agents are symmetric around their ideal points, none of our formal results depend on this assumption.
of the status quo) equals \hat{x}_1, which is not equal to either the status quo or the Floor median. Moreover, the Committee strictly prefers \hat{x}_1 to the status quo. Therefore, as Proposition 1 (Case 1) indicates, in equilibrium the Committee proposes \hat{x}_1, the Rules Committee assigns a closed rule, and the outcome of the game is \hat{x}_1.

![Figure 1A](image)

Figure 1A

Committee Behavior and Rule Assignment when Floor is between Committee and Rules Committee

<table>
<thead>
<tr>
<th>$\min R_c(x_p)$</th>
<th>$\min R_c(x_p) < x_s < x_F$</th>
<th>$x_F < x_s < x_C$</th>
<th>$x_C < x_s < x_F$</th>
<th>$x_s > x_F$</th>
<th>$x_s < x_R < \max R_R(x_F)$</th>
<th>$x_s > \max R_R(x_F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_C</td>
<td>\hat{x}_1</td>
<td>x_C</td>
<td>x_F</td>
<td>x_F</td>
<td>\hat{x}</td>
<td>\hat{x}</td>
</tr>
<tr>
<td>x_F</td>
<td>x_o</td>
<td>x_s</td>
<td>x_o</td>
<td>x_o</td>
<td>\hat{x}</td>
<td>x_F</td>
</tr>
<tr>
<td>Case from Proposition 1:</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 1B](image)

Figure 1B

Committee Behavior and Rule Assignment when Committee is between Floor and Rules Committee

<table>
<thead>
<tr>
<th>x_F</th>
<th>x_C</th>
<th>x_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_F</td>
<td>x_o</td>
<td>x_o</td>
</tr>
<tr>
<td>x_o</td>
<td>x_s</td>
<td>x_o</td>
</tr>
<tr>
<td>x_o</td>
<td>\hat{x}</td>
<td>x_F</td>
</tr>
<tr>
<td>Case in Proposition 1:</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

![Figure 1C](image)

Figure 1C

Committee Behavior and Rule Assignment when Rules Committee is between Floor and Committee

<table>
<thead>
<tr>
<th>x_1</th>
<th>\hat{x}_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_C</td>
<td>\hat{x}</td>
</tr>
<tr>
<td>x_R</td>
<td>x_o</td>
</tr>
<tr>
<td>x_F</td>
<td>\hat{x}</td>
</tr>
<tr>
<td>Case in Proposition 1:</td>
<td>4</td>
</tr>
</tbody>
</table>
This example illustrates how the structure of the legislative process forces committees to take into account the preferences not only of the Floor, but also of the Rules Committee when making a proposal. In this particular case, the Rules Committee prefers the status quo to the Floor median. Consequently, if the Committee were to propose some policy to the left of \(\hat{x}_I \), the Rules Committee would deny a rule, preserving the status quo. Although the Committee would prefer an outcome at the Floor median, \(\hat{x}_I \) is the best policy compromise it can achieve given that the Rules Committee controls rule assignment.

In the previous example, the location of the status quo constrains the Committee proposal. In some situations, however, it is the location of the Floor median which constrains the Committee proposal. Consider, for example, figure 1c. If the status quo is to the left of the Committee (also labelled \(x^*_C \)), then there are a large number of proposals, including the Committee's ideal point, that all agents prefer to the status quo. However, if the Rules Committee prefers the Floor median to the Committee median, then a Committee proposal of its own ideal point will receive an open rule. In this case, the Committee must propose some policy to its right that the Rules Committee (weakly) prefers to the Floor median. Such a proposal (\(\hat{x}_I \), for example) would be protected on the Floor by the assignment of a closed rule.

Inspection of all three figures shows that the open rule never occurs when both the Rules Committee and the Committee are on the same side of the median (figure 1b and figure 1c). This makes sense: when the median is not between the Rules Committee and the Committee, and the status quo is sufficiently extreme, then there exist policies that the Rules Committee and the Committee prefer to status quo, and that the Rules Committee also prefers to the Floor median. In equilibrium, the Committee chooses from this set the policy that maximizes its utility. A closed rule is then invoked by the Rules Committee to prevent amendments to this compromise.

4.2 Committee Behavior

While the main attention of this article is on rule assignment, our results also illuminate two aspects of committee behavior. First, the model suggests that committees will differ in the strategic considerations taken into account when making policy proposals. This is not a new point (see Fenno 1973). But what is new is that the factors considered by committees should have a systematic relationship to the nature of the legislative profile. In particular, when the status quo is extreme and the substantive committee and the Rules Committee are on opposite sides of the Floor median, we would expect the committee to propose bills that will simply pass on the Floor. In these situations, committees should be relatively unconcerned about the preferences of members of the Rules Committee. On the other hand, when the status quo is extreme and when the Rules Committee and the substantive committee are on the same side of the Floor, we should see the committee being a great deal more sensitive to the policy preferences of members of the Rules
Committee. This argument provides a potentially testable claim regarding strategic committee proposals.

Second, the model provides a policy rationale for position-taking by members of committees. The literature on Congress is replete with accounts of members making proposals that are either heavily amended on the Floor or that are killed by the Rules Committee before even making it to the Floor (e.g., Oleszek 1989; Tiefer 1989). One explanation for such behavior points to policy posturing as a signal to constituents and others outside the legislature (see, e.g., Fenno 1973, 278–79; Mayhew 1974). But proposing policies at or near one's ideal point in our model cannot be considered a signal to constituents, since there are no constituents in our model. This does not imply that such behavior is irrational—what may seem like posturing may actually be careful strategic calculation, taking into account all the possibilities that might emerge in the rule assignment stage. Such “strategic posturing” may be especially important to sophisticated actors such as interest groups who care specifically about the potential policy consequences of such behavior.

5. EMPIRICAL RESULTS

The model presented suggests that the incidence of closed rules should be related to the type of legislative profile: closed rules should be more likely to occur when the substantive committee and the Rules Committee are on the same side of the Floor median than is the case when the Rules Committee and the substantive committee are on opposite sides of the Floor median. Informational models provide the only alternative prediction about how the policy positions of committees should be related to the incidence of restrictive rules. These models predict that committees that are composed of “preference outliers” (committees whose preferences diverge significantly from the Floor) should be the least likely to receive closed rules. In this section we test the prediction from our model against the preference outlier prediction from informational models.

The dependent variable in our statistical models is the percentage of bills from a particular committee that receive restrictive procedures in a particular Congress. Our data on restrictive rules are from Bach and Smith (1988, 116–17), who present the total number of bills that receive rules for each committee, as well as the proportion of these bills that receive restrictive rules. The mean of the dependent variable is .25. Our independent variables are related to the positions of the Floor median, the Rules Committee median, and the medians of the remaining committees of the

8Our justification for the probabilistic interpretation applied here to our deterministic results lies in the measurement error arising from using voting scores as proxies for issue-specific preferences. That is, while the committee may generally lie on the same side of the Floor as the Rules Committee (and thus result in closed rules), for certain policies the Floor may be between the Floor and the Rules Committee (and thus receive open rules as well as closed rules).
House. The estimates of these positions, provided to us by James Snyder, are based on Londregan and Snyder (1992), who develop a heterogeneous-preference model to analyze NOMINATE voting data. We use their estimates of committee and Floor medians to categorize each committee by its legislative profile and its outlier status in the Ninety-fourth through Ninety-eighth Congresses. Legislative Profile, then, is a dummy variable that takes the value 1 if the median of the Rules Committee and the median member of the substantive committee are on the same side of the Floor median (and 0 otherwise). A positive coefficient supports our model. Preference Outlier is a dummy variable that takes the value 1 if we can reject with 95% confidence (two-tailed test) that the committee median is identical to the Floor median (and 0 otherwise). Committee Distance is a more refined variable to test the preference outlier prediction. It is the absolute value of the distance between the position of the committee median and the position of the Floor median using the voting scores. A negative coefficient supports the informational theory. The mean of Committee Distance is .10, its maximum value .46, and its minimum value 0. Since the size of residuals in the statistical models increases as the number of bills reported by a committee decrease, we estimate the model using GLS with White (1980) standard errors, which are consistent in the presence of heteroskedasticity.

Before discussing the results, we should highlight some important limitations to our empirical tests. First, the location of the status quo, while central to deriving predictions from our model, is absent from our empirical tests. Second, our model omits relevant independent variables for which we have no adequate measures. In particular, committee heterogeneity and specialization (Krehbiel 1991), distributive content of bills (Weingast and Marshall 1988), and party leadership involvement and Floor coalition activity (Sinclair 1993) should be included in future tests of our theory. Third, Bach and Smith’s data on restrictive rules include both closed rules (specifying that no amendments are in order) and rules with restrictive procedures (specifying some amendments, but not others, as being in order). Since their data do not permit us to separate out the closed and restrictive rules by committee, for the purposes of our empirical tests, we make the assumption that we can...
treat both types of rules as being equivalent to the closed rule that we model. These observations, and the poor overall fit of the statistical models that we present, suggest that much more needs to be taken into account to achieve a good empirical account of restrictive rule assignment. At the same time, we believe that our empirical evidence underlines the importance of further developing and testing of theories of legislative institutions that take into account the preferences of the Rules Committee.

The results of our multivariate analysis are presented in table 1 through table 3. Model 1 in table 1 includes only the type of Legislative Profile as an explanatory variable. The effect of Legislative Profile, as expected, is statistically significant and substantively large. Model 2 and model 3 contain only the two preference outlying committee variables. These models do not support the informational prediction. The coefficients for Preference Outlier and Committee Distance have the wrong sign and are not statistically significant. In model 4, we include both Legislative Profile and Preference Outlier, and in model 5, we include both Legislative Profile and Committee Distance on the right-hand side. In both columns, Legislative Profile is statistically significant and the size of the coefficient is stable when compared with column 1. Neither preference outlier variable has the correct sign, and neither is statistically significant. The results thus support our view of restrictive rules as devices for preserving noncentrist policy outcomes.

One difficulty with our analysis is that for some committees, we are unable to reject the null hypothesis that the committee and the Floor have the same preferences. This means that for these committees, we cannot state with a high degree of certainty that our coding of legislative profile is correct. To evaluate the potential seriousness of this problem, we have estimated the model using only those observations for which we can be confident of correct classification of the legislative profile. That is, we eliminated observations if either the difference between the Rules Committee median and the Floor median is not statistically significant, or the difference between the substantive committee and the Floor is not statistically significant (at the .05 level, two-tailed test). The results, presented in table 2 (model 6 through model 8), are remarkably similar to those in table 1. The major

12Krehbiel (1991, 168) also treats restrictive rules as identical to closed rules in his tests of the informational theory. Weingast (1989) finds that for the Ninety-eighth Congress, of 43 restrictive rules, 16 were completely closed and 19 completely controlled amending on the floor, and thus can be considered very restrictive. Only eight imposed weak constraints such as limiting amendments to only one section of the bill and not others. Thus, according to Weingast’s coding, over 80% of restrictive rules are in fact quite restrictive. Even these eight might be considered restrictive rules in the context of our model if they limit amendments only on those sections where the committee and the Rules Committee are on the same side of the Floor median on the issue, and allow amendments where committee and Rules are on opposite sides of the Floor. All these considerations suggest the need for future work recoding the data of Bach and Smith in view of the theoretical arguments set out in this article.

13Note that in estimating these models we cannot include Preference Outlier because all committees are outliers. We should also bear in mind that estimates of the Committee Distance variable are based only on the set of “extreme” committees and should be interpreted accordingly.
Table 1

GLS Analysis of the Occurrence of Restrictive Procedures: All Committees in 94th–98th Congresses

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Model (1)</th>
<th>Model (2)</th>
<th>Model (3)</th>
<th>Model (4)</th>
<th>Model (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.12</td>
<td>.24</td>
<td>.25</td>
<td>.11</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td>(.04)</td>
<td>(.05)</td>
<td>(.06)</td>
<td>(.05)</td>
<td>(.06)</td>
</tr>
<tr>
<td>Legislative Profile</td>
<td>.19</td>
<td>—</td>
<td>—</td>
<td>.19</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td>(.06)</td>
<td>—</td>
<td>—</td>
<td>(.06)</td>
<td>(.06)</td>
</tr>
<tr>
<td>Preference Outlier</td>
<td>—</td>
<td>.04</td>
<td>—</td>
<td>.02</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(.07)</td>
<td>—</td>
<td>(.07)</td>
<td>—</td>
</tr>
<tr>
<td>Committee Distance</td>
<td>—</td>
<td>—</td>
<td>.05</td>
<td>—</td>
<td>-.003</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>(.50)</td>
<td>—</td>
<td>(.47)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>.06</td>
<td>-.009</td>
<td>-.01</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>N</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
</tbody>
</table>

Note: All models are estimated using GLS with White standard errors, which are given in parentheses.

Table 2

GLS Analysis of the Occurrence of Restrictive Procedures: Restricted Set of Committees in 94th–98th Congresses

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Model (6)</th>
<th>Model (7)</th>
<th>Model (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.08</td>
<td>.60</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td>(.03)</td>
<td>(.23)</td>
<td>(.19)</td>
</tr>
<tr>
<td>Legislative Profile</td>
<td>.41</td>
<td>—</td>
<td>.41</td>
</tr>
<tr>
<td></td>
<td>(.10)</td>
<td>—</td>
<td>(.10)</td>
</tr>
<tr>
<td>Preference Outlier</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Committee Distance</td>
<td>—</td>
<td>-1.23</td>
<td>-1.31</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(1.39)</td>
<td>(1.24)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>.12</td>
<td>-.01</td>
<td>.12</td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Note: Data include only observations for which the difference between the Rules Committee median and the floor median is statistically significant and the difference between the substantive committee and the floor committee is statistically significant (at the .05 level).
difference is that the parameter estimate for *Committee Distance*, while still plagued by a very large standard error, has the correct sign and a larger substantive impact on the incidence of closed rules than was the case in table 1. The results in table 1 and table 2, then, support the prediction from our model but do not support the outlier prediction from informational models.

The results using the restricted set of committees focused our attention on the changing nature of the Rules Committee during the period we are studying, and in particular on the differences between the Rules Committee of the Ninety-fourth and Ninety-fifth Congresses and those of the Ninety-sixth through Ninety-eighth Congresses. Two factors are important to note. First, in the Ninety-fourth through Ninety-fifth Congresses, the preferences of the Rules Committee did not significantly differ from those of the Floor. This is not the case for the three Congresses following, during which time the Rules Committee became a liberal outlier. This change is all the more surprising for the fact that during the period from the Ninety-fourth through the Ninety-sixth Congresses, three Republicans were added to the Rules Committee, a change in composition that should, *ceteris paribus*, have pushed the committee to the median. In addition to the changes in the composition of the committee was a second factor, a change in leadership. In the Ninety-sixth Congress, the Rules Committee received a new chair, Richard Bolling (D-MO), who observers note assumed a much greater partisan perspective in crafting restrictive rules to benefit the Democratic Party majority than had his predecessor, James Delaney (D-NY) (see Dodd and Oppenheimer 1989, 444–45; House Committee on Rules 1983, 222–23; and Smith 1989, 338–39.) But perspective was not all Bolling brought to the Rules Committee. He also ushered in a number of institutional changes, including a caucus of Democrats on the committee before Rules Committee meetings and the practice of having staffers attend committee mark-ups on important legislation (Sinclair 1983, 81). Besides providing the Rules Committee with information, the latter practice also provides committees at a crucial stage with a very visible reminder of the necessity to take Rules Committee preferences into account.

This transformation in the Rules Committee is important given the assumption in our model that the Rules Committee is an autonomous actor whose preferences differ from those of the Floor median. If the preferences of the Rules Committee were the same as the Floor median, then our model would predict open rules on all bills. Thus, our model would predict that there should be more restrictive rules in the Ninety-sixth through Ninety-eighth Congresses then during the Ninety-fourth through Ninety-fifth Congresses. Informational models, on the other hand, assume that the Rules Committee must act as a perfect agent of the Floor regardless of the policy preferences of its members. Consequently, these models would predict no differences between the incidence of restrictive rules when the composition of the Rules Committee changed after the Ninety-fifth Congress. In fact, the percentage of all bills that received restrictive rules jumped from 14% in the Ninety-fourth through Ninety-fifth Congresses to 28% in the Ninety-fifth through
Douglas Dion and John Huber

TABLE 3

GLS ANALYSIS OF THE OCCURRENCE OF RESTRICTIVE PROCEDURES: 94TH–95TH CONGRESSES VersUS 96TH–98TH CONGRESSES

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>94th–95th Congresses</th>
<th>96th–98th Congresses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model (9)</td>
<td>Model (10)</td>
</tr>
<tr>
<td>Constant</td>
<td>.14</td>
<td>.25</td>
</tr>
<tr>
<td></td>
<td>(.06)</td>
<td>(.07)</td>
</tr>
<tr>
<td>Legislative Profile</td>
<td>.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.08)</td>
<td>.006</td>
</tr>
<tr>
<td>Committee Distance</td>
<td>—</td>
<td>-1.03</td>
</tr>
<tr>
<td></td>
<td>(.43)</td>
<td>(.43)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>-.03</td>
<td>.10</td>
</tr>
<tr>
<td>N</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: In the 94th–95th Congress the difference between the Rules Committee median and Floor Median is not statistically significant, whereas in the 96th–98th Congress this difference is statistically significant.

Ninety-eighth Congresses, suggesting it may indeed be the case that the members of the Rules Committee have the leeway to let their personal policy preferences influence their actions. These results thus provide a new perspective on the growth in restrictive rules over the 1980s.

The preceding discussion also indicates that the informational theory may be stronger than our pooled results suggest. In particular, given the changes outlined earlier, we would expect that data on restrictive rule assignment should be most supportive of the preference outlier prediction from the informational theory before the Ninety-sixth Congress, when the median on the Rules Committee was the same as the median on the Floor. Similarly, the data should be most supportive of the prediction from the model presented in this article after the Ninety-fifth Congress, when the median on the Rules Committee diverges from the median on the Floor. To explore this possibility, we estimated the regression models separately for the Ninety-fourth through Ninety-fifth Congresses and the Ninety-sixth through Ninety-eighth Congresses. Because the findings for Preference Outlier are similar, we only report the models which use the Committee Distance variable.

Table 3 presents the results. In the Ninety-fourth through Ninety-fifth Congresses (models 9–11), when the preferences of the Rules Committee are not statistically significantly different than those of the Floor, we find that the type of legislative profile has no effect on the incidence of restrictive rules and that the distance of the substantive committee from the Floor has a large effect that is statistically
significant in the direction predicted by informational models. But turning to the Ninety-sixth through Ninety-eighth Congresses (models 12–14), when the preferences of the Rules Committee are different from those of the Floor, the results are consistent with the predictions from our model and inconsistent with the predictions from the informational models.

The data, then, suggest that the preferences of the Rules Committee play an important part in understanding the use of restrictive rules. If, as informational models assume, the preferences of the Rules Committee are the same as the median member of the Floor, then the preference outlier prediction from these models receives empirical support. But if the preferences of the Rules Committee diverge from the Floor, as our model assumes, support for the outlier prediction disappears and the data support the prediction from our model.

6. EXTENSIONS

While the structure of our model roughly matches the actual structure of legislative decision making in the House, there are several deviations that are important to note. First, we assume that gatekeeping power by both the Committee and the Rules Committee is absolute. In the House, however, a simple majority can use a discharge petition to force any committee (including Rules) to report a bill. We include gatekeeping in our model because we believe that the ability of committees to block unwanted policy proposals is an important aspect of legislative politics in the House (for substantive committees see Herzberg 1986; Hinckley 1988, 140–43; Kingdon 1973 [1989], 140–42; Wilson 1885 [1956], 63–64; for Rules see Fenno 1973, 235; Tiefer 1989, 264–69; for dissenting views, see Krehbiel 1987; Maass 1983, 86–87). Elsewhere we prove that the elimination of both gatekeeping by substantive committees and the denial of rules by the Rules Committee does not alter our predictions regarding the relationship between the legislative profile and the assignment of restrictive rules (Dion and Huber 1994).

Second, we assume that the Floor does not vote on the rule proposed by the Rules Committee. In actual legislative practice, however, the Floor can not only vote down the rule (a tactic known as a “procedural kill”) but can also amend the rule (as occurred, for example, in the 1981 Omnibus Budget Reconciliation Act). The possibility of amending special rules on the Floor is a more serious problem, since there would be nothing in our model to prevent the Floor from simply amending every closed rule to an open rule. The same problem also exists in previous efforts to analyze restrictive rules because no existing formal model (distributive or informational) has explicitly incorporated the possibility of the rule being amended on the Floor. Thus, the question of amending the rule is an important problem for future research.

We feel that a key element in crafting a solution is provided by a recognition of the costs of legislative participation (Cox and McCubbins 1993, 237–39, 287–89;
Douglas Dion and John Huber

Gilligan and Krehbiel 1989; see also Hall 1989). Cox and McCubbins (1993) argue that attempts to override scheduling decisions face two sorts of costs: the costs of possible leadership retaliation, and the transactions costs involved in putting together a majority to overturn the Speaker's scheduling decisions. The costs of defying the Rules Committee have been widely discussed in the literature (Oleszek 1989, 144; Peabody 1985, 258–60; Tiefer 1989, 322) and could easily be included in the model.

A different sort of cost is alluded to by Gilligan and Krehbiel (1989b). In their article, the assignment of an open rule carries a cost to committees, and by varying the probability of the assignment of an open rule, the Floor (the strategic actor in their model assigning the rule) can induce the committee to reveal information.14 The costs of the open rule to the committee, according to Gilligan and Krehbiel (1989), arise from the fact that “committees may suffer from a perceived loss of control over policy in their jurisdictions if and when their proposals are targets of amendments by nonspecialist members of the parent organization” (297). They note that committees not protected by restrictive procedures are bothered, “presumably, in part, because they are less able to engage in ‘credit claiming’ upon final passage of legislation” (297–98).

This argument could be easily applied to political parties. Like committees, political parties also have an interest in credit claiming and are distressed when opportunities for credit claiming do not arise. If rules were assigned by perfect agents of the Floor in our model, closed rules would never arise, and the policy outcome would be the median legislator's preferences. This outcome would occur regardless of which party controlled the legislature, and thus claims about party responsibility for legislative innovations would be noncredible. By controlling the strategic actor assigning the rules, however, it is possible for political parties to induce policy outcomes away from those of the median legislator, and therefore as a result to “claim credit” for policy outcomes.

This view of the Rules Committee is neither new nor especially subtle. In 1931, Bertrand H. Snell, a Republican from New York and chair of the House Committee on Rules, told his colleagues

If I understand the function of the Rules Committee of the House, it is to act in harmony with the majority sentiment of the majority of the House of Representatives. It is to act in coordination and harmony with the steering committee of the House. It is the duty of the Rules, as I understand it, to act, as far as possible, for the protection of the administration and the administration program of legislation. If I am wrong in that assumption then I do not understand the rules nor the reason for having a Rules Committee in the House. (House Committee on Rules 1983, 238)

Parliamentary modesty aside, it is unlikely that Snell misunderstood the purpose behind the Rules Committee. And while the tendency of that committee to act in

14To be precise, in their model the critical actor is the “pivot,” which could be either a single leader, the swing voter under a supermajority, or the median legislator (as in our model).
Procedural Choice and the House Committee on Rules

harmony with the majority sentiment of the majority has been far from constant since the time these words were spoken, the essential principle remains.

7. Conclusion

If we begin with the premise that the Rules Committee plays an autonomous part in the legislative process, our understanding of the role of restrictive rules changes. Restrictive rules are not simply the glue holding vote trades together, as distributive theories conclude, nor are these rules precommitments that encourage legislative specialization, as informational theories argue. Instead, restrictive rules facilitate noncentrist policy outcomes that are preferred by both substantive committees and the Rules Committee to the policy outcome that would result if the Floor had been allowed an unconstrained choice of policies.

The use of restrictive rules to enforce such noncentrist outcomes, however, is clearly dependent upon our assumption that the Rules Committee does not share the preferences of the median legislator. Since the 1870s, however, the relationship between the Rules Committee, substantive committees, and the Floor has undergone significant transformations (Jones 1968; Sinclair 1989). One of the most profound of these changes was the transition from the conservative and obstructionist Rules Committee of the 1950s to the liberal and activist Rules Committee of the present day. Our theory would suggest that a Rules Committee significantly more conservative than the Floor and the substantive committees (such as Rules during the Judge Smith era) would in most situations either deny a rule or offer an open rule. By contrast, when Rules and the substantive committee are on the same side of the median (which appears to occur under Chairman Bolling) then we would expect restrictive rules to rise. As first approximations, these arguments do appear to characterize a major difference between the Smith and Bolling years (Robinson 1963; Bach and Smith 1988).

To raise this point, however, is to ask a more difficult question. Why does Rules have the members that it does, and thus a particular set of policy preferences and interests? As is suggested in much recent work on Congress (Cox and McCubbins 1993; Dion 1991; Kiewiet and McCubbins 1991; Rohde 1991; Sinclair 1993; Weingast 1989), and as is clear in the parliamentary context (Baron 1993; Cox 1987; Huber 1992), our analysis points to the importance of focusing on the role of political parties in the study of legislatures. Institutional features such as the membership of the Rules Committee are not fashioned by an unstructured assemblage of legislators. Instead, the selection of such features occurs within a party context. Within the postreform era, the Rules Committee clearly functions as an arm of the majority party leadership, and thus it is the preferences of those majority party leaders which determine the structure of Rules Committee interests.
These comments, in the context of our model, help explain what would be an otherwise puzzling phenomenon. The debate over the rise of restrictive rules in the 1980s has assumed an exceptionally partisan tenor (Rohde 1991, 132–38), with the Republicans accusing a liberal Rules Committee of protecting the bills of liberal committees from bipartisan amendment on the Floor. This level of rancor is difficult to understand if we think of restrictive rules as preserving logrolls among preference outlying (and reelection seeking) members of Congress. Nor does it seem quite consistent with an informational theory that suggests that restrictive rules make members of the Floor better off by providing them with more informed policy. By contrast, our results suggest that the use of restrictive procedures can be an important mechanism for retaining majority party influence over legislation.

But the ability of the majority party leadership to rely on the mechanism of the Rules Committee, has, as noted earlier, varied over time. An important question for future research, therefore, is understanding why these transitions take place when they do. What allows the majority party leadership to recapture the Rules Committee? Under what conditions can Rules act autonomously from the leadership? These are difficult questions, but answering them will fill in our understanding of the relationship between individual preferences, institutional structures, and the role of political parties in legislatures.

APPENDIX

This Appendix presents the statements and proof of the proposition contained in the text. To derive the subgame perfect equilibrium of the game, we must first calculate the optimal action of the Rules Committee (R) in the Procedural Stage, and then work back to derive the optimal action of the Committee (C), taking the optimal action of the Rules Committee as given.

In establishing the best-response by R to any proposal by C, we make the following assumptions:

Assumption 1. If R is indifferent between an open rule and the denial of a rule and strictly prefers the open rule to the closed rule, R will grant an open rule.

Assumption 2. If R weakly prefers the closed rule to both the open rule and deny, R will choose a closed rule.

These tie-breaker assumptions specify behavior consistent with equilibrium behavior given the elimination of weakly dominant strategies. The assumptions have no substantive implications for the results from our model; we make them only to simplify the proofs.15

15Proofs of the propositions without these tie-breaker assumptions are available from the authors on request.
Lemma 1

For any x_B:

(i) if $x_F \in P_R(x_B) \cap P_R(x_o)$, then $r^*(x_B) = 0$;
(ii) if $x_B \in I_R(x_o) \cap I_R(x_F)$, then $r^*(x_B) = C$.

If either condition (i) or (ii) is not satisfied, then R's best response depends on whether x_B will pass on the Floor.

Consider $x_B \in R_F(x_o)$ (so that x_B will pass on the Floor):

(iii) If $x_o \in P_R(x_B) \cap P_R(x_F)$, then $r^*(x_B) = D$.
(iv) If $x_o \not\in P_R(x_B) \cap P_R(x_F)$ and $x_B \in R_R(x_F)$, then $r^*(x_B) = 0$;
(v) If $x_o \not\in P_R(x_B) \cap P_R(x_F)$ and $x_B \in R_R(x_F)$, then $r^*(x_B) = C$.

Finally consider $x_B \not\in R_F(x_o)$ (so that x_B will not pass on the Floor):

(vi) If $x_F \in P_R(x_o)$, then $r^*(x_B) = 0$
(vii) If $x_F \not\in P_R(x_o)$, then $r^*(x_B) = C$.

Proof. The best response for the Rules Committee to proposal x_B will depend on the outcome associated with each rule assignment. If $r(x_B) = 0$, then the outcome is x_F. If $r(x_B) = C$ and $x_B \in R_F(x_o)$, then $x^* = x_B$. If $r(x_B) = C$ and $x_B \not\in R_F(x_o)$, then $x^* = x_o$. If $r(x_B) = D$, then $x^* = x_o$. For each case, R selects that rule which gives R its most preferred outcome. In cases where R is indifferent, we apply assumption 1 and assumption 2.

Consider case (i). If $r(x_B) = D$, then by the above argument $x^* = x_o$. If $r(x_B) = 0$, then $x^* = x_F$. Since $x_F \in P_R(x_o)$, R prefers O to D. If $r(x_B) = C$, then the outcome depends upon x_B. If $x_B \not\in R_F(x_o)$, then $x^* = x_o$, and by the argument just made, R prefers O to C. If $x_B \in R_F(x_o)$, then $x^* = x_B$. Since $x_F \in P_R(x_B)$, R will prefer O to C. Thus in case (i), R's best response to x_B is to select $r^*(x_B) = O$.

Consider case (ii). Since R is indifferent between all three strategies, R will choose C by assumption 2.

Consider case (iii). Since R strictly prefers x_o to x_B (which will pass on the Floor) and x_o to x_F, R strictly prefers to deny a rule.

Consider case (iv). First note that $x_B \not\in R_R(x_F)$ (i.e., $x_F \in P_R(x_B)$) implies that we only care about situations in which $x_F \in R_R(x_o)$. If this were not true, then by transitivity, $x_o \in P_R(x_B) \cap P_R(x_F)$ and case (iii) applies. Thus, in case (iv) R strictly prefers an open rule to a closed rule (because $x_F \in P_R(x_B)$ and $x_B \in R_F(x_o)$) and R weakly prefers an open rule to denial of a rule (because $x_F \in R_R(x_o)$). If R is indifferent between O and D, then by assumption 1, R chooses an open rule.

Consider case (v). By a logic similar to case (iv), $x_B \in R_R(x_F)$ implies we only care about situations in which it is also true that $x_B \in R_R(x_o)$. If this were not true (so
that $x_0 \in P_R(x_B)$, then $x_0 \in P_R(x_B) \cap P_R(x_F)$ and case (iii) applies. Since $x_B \in R_R(x_o) \cap R_R(x_F) \cap R_F(x_o)$, R weakly prefers a closed rule to either an open rule or deny. In cases where R is indifferent, by assumption 2, R will choose a closed rule.

In cases (vi) and (vii), R is indifferent between C and D because both strategies yield an outcome of x_0 (because $x_B \notin R_F(x_o)$). In case (vi), R strictly prefers x_F to x_o, so R will choose an open rule. In case (vii), R weakly prefers a closed rule to an open rule, and thus by assumption 2 will choose a closed rule.

Next we give two definitions and three lemmas that will be useful in proving Proposition 1.

Definition

Let

\[\hat{x} = \text{argmax} \ U_C(x) \]

where $Z = R_R(x_o) \cap R_R(x_F) \cap R_F(x_o)$.

Definition

Let

\[\bar{x} = \text{argmax} \ U_C(x) \]

where $Z = R_R(x_o) \cap R_R(x_F) \cap R_F(x_o)$.

Lemma 2

A necessary condition for a proposal, x_B, to receive a closed rule and be the subgame perfect equilibrium outcome of the game is that $x, \in Z$.

Proof. By Lemma 1, R's best response to any x_B will be a closed rule only if the conditions in case (ii), case (v), or case (vii) are satisfied. A proposal receiving a closed rule passes on the Floor only if $x_B \in R_F(x_o)$. Thus, we can ignore Lemma 1, case (vii). In the remaining two closed rule cases, the proof of Lemma 1 indicates that $x_0 \in R_R(x_o) \cap R_R(x_F)$ must be true. Thus, any proposal x_B can receive a closed rule and pass on the Floor only if $x_B \in R_R(x_o) \cap R_R(x_F) \cap R_F(x_o)$.

Lemma 3

The proposal \hat{x} always exists and is unique.

Proof. A continuous and strictly quasi-concave function attains a unique maximum on a nonempty, closed and convex set. U_C is continuous and strictly quasi-concave by assumption, and Z is closed and convex as the intersection of closed and convex sets. Thus if Z is nonempty, \hat{x} exists and is unique. Assume, therefore, that Z is empty. Since $x_0 \in R_R(x_o) \cap R_F(x_o)$, $Z = \emptyset$ implies that $x_o \notin R_R(x_F)$ (i.e.,
47

Procedural Choice and the House Committee on Rules

\[x_F \succ_R x_o \]. But since \(x_F \in R_R(x_F) \cap R_F(x_o) \), \(Z = \emptyset \) implies that \(x_F \notin R_R(x_o) \) (i.e., \(x_o \succ_R x_F \)), a contradiction proving that \(Z \) is nonempty. □

Lemma 4

The policy \(\hat{x} \) always exists and is unique.

Proof. Since \(R_F(x_o) \) is a nonempty, closed, and convex set, and \(U_C \) is continuous and strictly quasi-concave, \(\hat{x} \) exists and is unique. □

Proposition 1 presents the unique subgame perfect equilibrium of the game. To be technically correct, each part of the proposition should include Lemma 1, indicating \(R \)'s equilibrium behavior in subgames off the equilibrium path (i.e., the Rules Committee's best response to nonequilibrium proposals). To eliminate repetition (as well as to direct attention to the equilibrium path) we indicate only \(R \)'s responses to the equilibrium proposal.

Proposition 1

The unique subgame perfect equilibrium is

1. \((x^*_B = \hat{x}, r^*(x^*_B) = C) \) if (i) \(\hat{x} \neq x_F \), (ii) \(\hat{x} \neq x_o \), and (iii) \(\hat{x} \succ_C x_o \). (Closed Rule Case)
2. \((x^*_B = \hat{x}, r^*(x^*_B) = O) \) if (i) \(\hat{x} = x_F \) and (ii) \(\hat{x} \succeq_C x_o \). (Open Rule Case)
3. \((x^*_B = \hat{x}, r^*(x^*_B) = D) \) if (i) \(\hat{x} = x_o \) and (ii) \(x_F \succeq_C \hat{x} \). (Deny Case)
4. \((x^*_B = GK_i) \) in all remaining cases (Gatekeeping Case).

Proof.

We prove each case in turn.

Case 1. By Lemma 3, \(\hat{x} \) exists and is unique, and by definition, \(\hat{x} \in R_R(x_o) \cap R_R(x_F) \cap R_F(x_o) \). Thus, by the proof of Lemma 1 (case v), \(\hat{x} \) receives a closed rule. Since \(\hat{x} \in R_F(x_o) \), the outcome of the game will be \(\hat{x} \). Thus, it only remains to show that \(C \) prefers \(\hat{x} \) proposing to gatekeeping and to making any other proposal.

Since \(\hat{x} \succ_C x_o \) (by assumption iii), \(C \) prefers proposing \(\hat{x} \) to gatekeeping, to making any proposal that is denied a rule, and to making any proposal that receives a closed rule and fails on the Floor. By Lemma 2, \(C \) also prefers proposing \(\hat{x} \) to making any other proposal that could receive a closed rule and pass on the Floor. Thus, it only remains to show that \(C \) prefers proposing \(\hat{x} \) to making any proposal receiving an open rule. Note that there are two cases, \(x_F \in Z \) and \(x_F \notin Z \). If \(x_F \in Z \), then \(\hat{x} \succ_C x_F \), because \(\hat{x} \) maximizes \(U_C \) over \(Z \) and \(\hat{x} \neq x_F \) by (i). Therefore \(C \) prefers to propose \(\hat{x} \) (yielding \(\hat{x} \)) than to make a proposal receiving the open rule (yielding \(x_F \)). If \(x_F \notin Z \), then since \(x_F \in R_R(x_F) \cap R_F(x_o) \), it follows that \(x_F \notin R_R(x_o) \). But this implies that there exists no proposal that \(C \) could make which would receive an
open rule (because \(x_o \in P_R(x_F) \) implies that \(R \) would prefer to deny a rule rather than granting an open rule).

Case 2. By Lemma 4, \(\hat{x} \) exists and is unique. We show that (a) \(\hat{x} \) receives the open rule, (b) \(C \) prefers to make the proposal \(\hat{x} \) rather than gatekeeping or making any other proposal that receives a closed rule or a deny, and (c) \(C \) prefers making the proposal \(\hat{x} \) to making any other proposal that receives an open rule.

To prove (a), first we show that if \(\hat{x} = x_F \), then \(x_F \) is between \(x_R \) and \(x_C \). Assume without loss of generality that \(x_F < x_R \) and that \(x_F < x_C \) (so that \(\hat{x} \) is not between \(x_R \) and \(x_C \)). Then for any location of the status quo, it cannot be the case that \(\hat{x} = x_F \). To see this, note that if \(x_o < x_F \), there exists some \(x' = x_F + \epsilon \) such that for \(\epsilon > 0 \) and sufficiently small, \(x' \in Z \) and \(x' \in P_C(x_F) \). Thus, \(\hat{x} \neq x_F \). Similarly, if \(x_o \in (x_F, x_R) \), then \(x_o \) is the only element in \(Z \), so \(\hat{x} \neq x_F \). Finally, if \(x_R < x_o \), there are two possibilities. If \(x_F \in Z \), then given \(x_F < x_C \), by the same argument above, there exists \(x' = x_F + \epsilon \) such that for \(\epsilon > 0 \) and sufficiently small, \(x' \in Z \) and \(x' \in P_C(x_F) \). If \(x_R < x_o \) and \(x_F \in Z \), then clearly \(\hat{x} \neq x_F \). Thus, \(\hat{x} = x_F \) only if \(x_F \) is between \(x_R \) and \(x_C \).

Since \(x_F \) must be between \(x_R \) and \(x_C \), assume without loss of generality that \(x_C < x_F < x_R \). Then \(\hat{x} < x_F \) (because \(x_o \neq x_F \) and \(x_C < x_F \)), implying that \(x_F \in P_R(\hat{x}) \) (i.e., that \(\hat{x} \in R_R(x_F) \)). Since \(\hat{x} = x_F \), by definition of \(\hat{x} \) we know that \(x_F \in R_R(x_o) \). If \(x_F \in P_R(x_o) \), \(R \) will choose an open rule by Lemma 1 (case i). If \(x_F \in I_R(x_o) \), then since \(\hat{x} \in R_R(x_F) \), \(R \) will choose an open rule by Lemma 1 (case iv).

Next we show (b), that \(C \) prefers proposing \(\hat{x} \) to gatekeeping or to making any policy that receives a closed rule or deny. Conditions (i) and (ii) in Case 2 imply that \(x_F \in R_C(x_o) \). If \(x_F \in P_C(x_o) \), \(C \) clearly prefers proposing \(\hat{x} \) (yielding \(x_F \)) to gatekeeping or to making any proposal that is denied a rule. It is also the case that \(C \) prefers proposing \(\hat{x} \) to proposing any policy that receives a closed rule. Since \(x_C < x_F < x_R \), no proposal \(x_B < x_F \) will receive a closed rule. If \(C \) proposes \(x_B > x_F \), then a closed rule will result in either \(x_B \) or \(x_o \). For either case, \(C \) prefers to propose \(\hat{x} \). If \(C \) proposes \(x_B = x_F \) and the proposal receives a closed rule, the outcome is \(x_F \). In this case, a weak dominance argument applies. Since \(x_F \neq x_o \) and \(x_C \neq x_F \), it follows that \(\hat{x} \neq x_F \). Moreover, since \(x_F \in R_C(x_o) \) and \(\hat{x} \) is unique, \(\hat{x} \in P_C(x_F) \). If \(R \) chooses an open rule, proposing either \(x_F \) or \(\hat{x} \) yields \(x_F \). If \(R \) chooses a deny, both proposals yield \(x_o \). However, if \(R \) chooses a closed rule, both proposals pass. Because \(\hat{x} \in P_C(x_F) \), \(C \) prefers proposing \(\hat{x} \) to proposing \(x_F \).

Next assume that \(x_F \in I_C(x_o) \). By the previous argument, \(C \) prefers to propose \(\hat{x} \) to proposing any other policy that receives a closed rule and passes on the Floor. In addition, by a weak dominance argument similar to the one just discussed, proposing \(\hat{x} \) is preferred to making any proposal, call it \(x_B \), that either receives a closed rule and fails on the Floor or that is denied a rule. To see this, note that the outcomes from proposing either \(\hat{x} \) or \(x_B \) are utility-equivalent if \(R \) assigns either an open rule or a deny. Since \(\hat{x} \in P_C(x_F) \), by transitivity \(\hat{x} \in P_C(x_o) \). Thus, proposing \(\hat{x} \) dominates \(x_B \) if a closed rule is assigned, proving claim (b). The same argument also proves that \(C \) weakly prefers proposing \(\hat{x} \) to gatekeeping.
Finally, we prove (c), that C prefers proposing \(\hat{x} \) to proposing any other policy that receives an open rule in equilibrium. Again, a weak dominance argument applies. For any such proposal, the equilibrium outcome is \(x_F \). If R selects deny, then the outcome will be \(x_o \). Since \(\hat{x} \) is defined as the policy that results in the best outcome that C can achieve if R chooses a closed rule, we know that \(\hat{x} \) is C's weakly dominant strategy.

Case 3. By Lemma 4, \(\hat{x} \) exists. We show that (a) \(\hat{x} \) receives a deny, (b) C prefers proposing \(\hat{x} \) and receiving a deny to gatekeeping and to making any other proposal that receives any other rule, and (c) C prefers proposing \(\hat{x} \) to making any other proposal that is denied a rule.

To show (a), first note that \(\hat{x} = x_o \) and \(x_F \geq C x_o \) imply that \(x_F \notin Z \) (since \(\hat{x} \) is the unique maximum on \(Z \) and \(x_o \neq x_F \)). Since \(x_F \in R_R(x_F) \cap R_F(x_o) \), it must be true that \(x_F \notin R_R(x_o) \) (i.e., \(x_o \notin P_R(x_F) \)). It is also true that \(x_o \in P_R(x_B) \). To see this, without loss of generality let \(x_F < x_R \). Then \(x_o \in P_R(x_B) \) implies that \(x_F < x_o \). If \(x_R < x_o \), then \(\hat{x} = x_o \) only if \(x_o < x_C \). But this contradicts that \(x_F > C x_o \). Thus, it must be the case that \(x_F < x_o < x_R \). Since C weakly prefers \(x_F \) to \(x_o \), it must be true that \(x_C < x_o \). But this implies that \(\hat{x} < x_o \). Thus, \(x_o \in P_R(x) \cap P_R(x_F) \) and \(\hat{x} \in R_F(x_o) \) by Lemma 1 (case iii), R will deny a rule.

Next we prove (b). Recall that in the preceding paragraph we showed that the conditions in Case 3 imply, without loss of generality, that \(x_F < x_o < x_R \). Thus, no proposal will ever receive an open rule (because R prefers \(x_o \) to \(x_F \)). We therefore need to show that proposing \(\hat{x} \) is preferred by C to gatekeeping and to making any other proposal, \(x_B \), receiving a closed rule. If C gatekeeps, the outcome is \(x_o \). If C proposes any \(x_B \) receiving a closed rule, then in equilibrium, the outcome will also be \(x_o \). To see this, recall that by Lemma 2, only \(x_B \in Z \) can receive a closed rule and be the outcome of the game, and given \(x_F < x_o < x_R \), the only policy satisfying Lemma 2 is \(x_o \). For any other proposal that receives a closed rule, it must be true that \(x_B \in P_R(x_o) \), and thus that \(x_B \) will fail on the Floor. Consequently, any policy that receives a closed rule will yield an outcome of \(x_o \). Thus, proposing \(\hat{x} \) and receiving \(x_o \) (because it is denied a rule) gives C the same utility in equilibrium as either gatekeeping or proposing \(x_B \) and receiving \(x_o \) (because \(x_B \) is rejected on the Floor under a closed rule or because \(x_B = x_o \)). Hence, to prove that C prefers proposing \(\hat{x} \) to gatekeeping and to making any proposal that receives a closed rule, we must make a weak dominance argument. If either \(x_B \) or \(\hat{x} \) receives a deny, the outcome is \(x_o \), and if either \(x_B \) or \(\hat{x} \) receives an open rule, the outcome is \(x_F \) (which C weakly prefers to \(x_o \), and thus to the outcome from gatekeeping). But if either \(x_B \) or \(\hat{x} \) receives a closed rule, then proposing \(\hat{x} \) dominates both proposing \(x_B \) and gatekeeping because \(\hat{x} > C x_o \). To see this, note that \(\hat{x} > C x_F \) (because \(\hat{x} \) is the unique maximum of \(R_F(x_o) \), \(x_F \in R_F(x_o) \), and \(x_F \neq \hat{x} \)). By assumption, \(x_F > C \hat{x} \), and \(\hat{x} = x_o \). Thus, by transitivity, \(\hat{x} > C x_o \).

It only remains to show (c), that C would prefer proposing \(\hat{x} \) to proposing any other \(x_B \) receiving \(D \). But by an argument identical to that presented in (b), one can
Douglas Dion and John Huber

show that any other such proposal would yield the same utility under D as well as under O, and that \hat{x} dominates under C.

Case 4. First we show that in all cases not specified in Cases 1–3, (i) $x_o \geq_C \hat{x}$, and (ii) $x_o >_C x_F$. These cases are

(a) $\hat{x} \neq x_o$, $\hat{x} \neq x_F$, and $x_o \geq_C \hat{x}$ (not covered by Case 1)
(b) $\hat{x} = x_F$ and $x_o >_C \hat{x}$ (not covered by Case 2)
(c) $\hat{x} = x_o$ and $\hat{x} >_C x_F$ (not covered by Case 3).

For all three cases it is clear that $x_o \geq_C \hat{x}$. Similarly, for cases (b) and (c), $x_o >_C x_F$ follows directly from the conditions. Thus, we only need to show that $x_o >_C x_F$ follows from (a). Since $x_o \geq_C \hat{x}$, $x_o \not\in Z$ (otherwise by Lemma 3, $\hat{x} = x_o$, a contradiction). Since $x_o \in R_R(x_o) \cap R_F(x_o)$, $x_o \not\in Z$ implies $x_o \not\in R_R(x_F)$ (i.e., $x_F \not\in P_R(x_o)$). Since x_F is also in $R_R(x_F) \cap R_F(x_o)$, $x_F \in Z$, implying by Lemma 3 that $\hat{x} >_C x_F$.

Now we show that if conditions (i) and (ii) are met, then C will make no proposal. Since $x_o >_C x_F$, C strictly prefers gatekeeping (which yields x_o) to making any proposal receiving an open rule (which yields x_F). Thus, consider the proposals that might receive a closed rule and pass on the Floor. By Lemmas 2 and 3, \hat{x} is the best proposal that C can make which could receive a closed rule and pass on the Floor. By (i), $x_o \geq_C \hat{x}$. If $x_o >_C \hat{x}$, then C strictly prefers gatekeeping to making any proposal that receives a closed rule and passes on the Floor. If $x_o \sim_C \hat{x}$, then a weak dominance argument applies. By gatekeeping, C ensures that the outcome is x_o. If C makes a proposal that receives a closed rule and passes on the Floor, the best possible outcome is utility-equivalent to x_o. If the proposal receives a deny, the outcome is x_o. If the proposal receives an open rule, C is strictly worse off than x_o (since $x_o >_C x_F$). Thus, gatekeeping weakly dominates making a proposal. By the same weak dominance argument, C prefers gatekeeping to making any proposal that is denied a rule, and to making any proposal that receives a closed rule and fails on the Floor.

Corollary 1

A necessary condition for an open rule is that x_F be located between x_C and x_R.

Proof. In Proposition 1, which characterizes the unique subgame perfect equilibrium for all possible legislative profiles, we see that open rules only occur in Case 2, where $\hat{x} = x_F$. The proof of Case 2 demonstrates that $\hat{x} = x_F$ only when x_F is between x_R and x_C. \square

Manuscript submitted 6 June 1994
Final manuscript received 24 February 1995
References

Douglas Dion is assistant professor of political science, University of Michigan, Ann Arbor, Michigan 48109.

John D. Huber is assistant professor of political science, University of Michigan, Ann Arbor, Michigan 48109.
You have printed the following article:

Procedural Choice and the House Committee on Rules
Douglas Dion; John D. Huber
Stable URL:
http://links.jstor.org/sici?sici=0022-3816%28199602%2958%3A1%3C25%3APCATHC%3E2.0.CO%3B2-5

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Footnotes]

9 The Committee Assignment Process and the Conditional Nature of Committee Bias
Richard L. Hall; Bernard Grofman
Stable URL:
http://links.jstor.org/sici?sici=0003-0554%28199012%2984%3A4%3C1149%3ATCAPAT%3E2.0.CO%3B2-E

References

Government Formation and Endogenous Parties
David P. Baron
Stable URL:
http://links.jstor.org/sici?sici=0003-0554%28199303%2987%3A1%3C34%3AGFAEP%3E2.0.CO%3B2-6

Bargaining in Legislatures
David P. Baron; John A. Ferejohn
Stable URL:
http://links.jstor.org/sici?sici=0003-0554%28198912%2983%3A4%3C1181%3ABIL%3E2.0.CO%3B2-N

NOTE: The reference numbering from the original has been maintained in this citation list.
Gatekeeping and Monopoly Power of Committees: An Analysis of Sincere and Sophisticated Behavior
Arthur T. Denzau; Robert J. Mackay
Stable URL: http://links.jstor.org/sici?sici=0092-5853%28198311%2927%3A4%3C740%3AGAMPOC%3E2.0.CO%3B2-I

Asymmetric Information and Legislative Rules with a Heterogeneous Committee
Thomas W. Gilligan; Keith Krehbiel
Stable URL: http://links.jstor.org/sici?sici=0092-5853%28198905%2933%3A2%3C459%3AAIALRW%3E2.0.CO%3B2-0

The Committee Assignment Process and the Conditional Nature of Committee Bias
Richard L. Hall; Bernard Grofman
Stable URL: http://links.jstor.org/sici?sici=0003-0554%28199012%2984%3A4%3C1149%3ATCAPAT%3E2.0.CO%3B2-E

Restrictive Legislative Procedures in France and the United States
John D. Huber
Stable URL: http://links.jstor.org/sici?sici=0003-0554%28199209%2986%3A3%3C675%3ARLPIFA%3E2.0.CO%3B2-H

Joseph G. Cannon and Howard W. Smith: An Essay on the Limits of Leadership in the House of Representatives
Charles O. Jones
Stable URL: http://links.jstor.org/sici?sici=0022-3816%28196808%2930%3A3%3C617%3AJPGAH%3E2.0.CO%3B2-X

Why Are Congressional Committees Powerful?
Keith Krehbiel; Kenneth A. Shepsle; Barry R. Weingast
Stable URL: http://links.jstor.org/sici?sici=0003-0554%28198709%2981%3A3%3C929%3AWEACCP%3E2.0.CO%3B2-3

NOTE: The reference numbering from the original has been maintained in this citation list.
Allocation of Desirable Committee Assignments: Extended Queues versus Committee Expansion
Michael C. Munger
Stable URL:
http://links.jstor.org/sici?sici=0092-5853%28198805%2932%3A2%3C317%3AAODCAE%3E2.0.CO%3B2-M

Institutional Arrangements and Equilibrium in Multidimensional Voting Models
Kenneth A. Shepsle
Stable URL:
http://links.jstor.org/sici?sici=0092-5853%28197902%2923%3A1%3C27%3AIAAEIM%3E2.0.CO%3B2-X

The Industrial Organization of Congress; or, Why Legislatures, Like Firms, Are Not Organized as Markets
Barry R. Weingast; William J. Marshall
Stable URL:
http://links.jstor.org/sici?sici=0022-3808%28198802%2996%3A1%3C132%3ATIOOECO%3E2.0.CO%3B2-S

A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity
Halbert White
Stable URL:
http://links.jstor.org/sici?sici=0012-9682%28198005%2948%3A4%3C817%3AAHCMEA%3E2.0.CO%3B2-K

NOTE: The reference numbering from the original has been maintained in this citation list.