A Bayesian nonparametric dynamic AR model for multiple time series analysis

Luis E. Nieto Barajas

(joint with Fernando Quintana)

Department of Statistics
ITAM, Mexico

COBAL V – 8 June 2017
Outline

1. Model
2. Dependent Pólya trees
3. Analysis
4. References
Destationalized Series ITAEE 2008
The economy of the 32 Mexican states depends on the global economy of the whole country.

The 32 time series interact among each other.

Need a model that respects the individual evolution of each time series but considers the country dependence.
The economy of the 32 Mexican states depends on the global economy of the whole country.

The 32 time series interact among each other.

Need a model that respects the individual evolution of each time series but considers the country dependence.

Let $X_i = \{X_{ti}, t \geq 1\}$, $i = 1, \ldots, n$. Propose

$$X_{ti} = \beta_1 X_{t-1,i} + \cdots + \beta_p X_{t-p,i} + \varepsilon_{ti},$$

with $X_{ti} = 0$ w.p.1 for $t < 0$, and

$$\varepsilon_{ti} \sim F_t, \quad \text{for} \quad i = 1, \ldots, n$$

$$\{F_1, F_2, \ldots\} \sim \text{dPT}_q(\Pi, a, \rho, C)$$

$$\theta \sim f(\theta).$$
Pólya tree

\[Y_0 = p(B_0 | B) \]

\[Y_1 = p(B_1 | B) = 1 - Y_0 \]
Pólya tree
Formally, a random probability measure F in $(\mathbb{R}, \mathcal{B})$ has a Pólya tree distribution with parameters (Π, \mathcal{A}).

In notation $F \sim \text{PT}(\Pi, \mathcal{A})$, if there exists a sequence of non-negative numbers $\mathcal{A} = \{\alpha_{mj}\}$ and a family of r.v. $\mathcal{Y} = \{Y_{mj}\}$ s.t.

a) All r.v. in \mathcal{Y} are independent;

b) For each $(m, j), j = 1, \ldots, 2^{m-1}$ and $m = 1, 2, \ldots$, $Y_{m,2j-1} \sim \text{Be}(\alpha_{m,2j-1}, \alpha_{m,2j})$ and $Y_{m,2j} = 1 - Y_{m,2j-1}$; and,

c) For each $m = 1, 2, \ldots$ and each $j = 1, \ldots, 2^m$,

$$F(B_{mj}) = \prod_{k=1}^{m} Y_{m-k+1,j_{m-k+1}^{(m,j)}},$$

where $j_{k-1}^{(m,j)} = \lceil j_{k}^{(m,j)}/2 \rceil$ is a recursive formula with initial value $j_{m}^{(m,j)} = j$.

Typically $\alpha_{m,j} = a \rho(m)$ \Rightarrow $F \sim \text{PT}(\Pi, a, \rho)$.
Pólya tree

- Randomness in the tree depends on $Y_{m+1,2j-1} = P(B_{m+1,2j-1} | B_{mj})$

- Introduce dependence across several trees by defining a sequence of dependent variables $\mathcal{Y}_t = \{Y_{t,m,j}\}$

- How?
Pólya tree

- Randomness in the tree depends on $Y_{m+1,2j-1} = P(B_{m+1,2j-1} | B_{mj})$

- Introduce dependence across several trees by defining a sequence of dependent variables $\mathcal{Y}_t = \{Y_{t,m,j}\}$

- How? Through a beta process (Jara et al., 2013)

$$y_t \mid u_t, u_{t-1}, \ldots, u_{t-q} \sim \text{Be} \left(a + \sum_{j=0}^{q} u_{t-j}, b + \sum_{j=0}^{q} (c_{t-j} - u_{t-j}) \right) ,$$

$$u_t \mid w \sim \text{Bin}(c_t, w), \quad t = 1, 2, \ldots$$

$$w \sim \text{Be}(a, b)$$
Order q beta process (BeP_q)
Dependent Pólya trees

- \(\mathcal{F} = \{F_1, F_2, \ldots\} \) are dependent Pólya trees s.t.
 \[
 \mathcal{F} \sim d\text{PT}_q(\Pi, a, \rho, \mathcal{C}),
 \]
 with \(\mathcal{C} = \{c_{t,m,j}\} \), \(a > 0 \) and \(\rho(m) = m^\delta \), \(\delta > 1 \) to ensure continuity. Usually \(\delta = 2 \) but we suggest \(\delta = 1.1 \) (Watson et al., 2017)

- Properties:
 \[
 \text{Corr}\{F_t(B_{mj}), F_{t+s}(B_{mj})\} = \frac{\prod_{k=1}^{m} \left\{ \psi_{t,s,m-k+1,j_{m-k+1}^{(m,j)}(m,j)} \sigma_{m-k+1}^2 + 1/4 \right\} - (1/4)^m}{\prod_{k=1}^{m} \left\{ \sigma_{m-k+1}^2 + 1/4 \right\} - (1/4)^m},
 \]

 with
 \[
 \psi_{t,s,k,j_{k}^{(m,j)}(m,j)} = \frac{2a\rho(k) \left(\sum_{l=0}^{q-s} c_{t-l,k,j_{k}^{(m,j)}} + \sum_{l=0}^{q} c_{t-l,k,j_{k}^{(m,j)}} \right) \left(\sum_{l=0}^{q} c_{t+s-l,k,j_{k}^{(m,j)}} \right)}{2a\rho(k) + \sum_{l=0}^{q} c_{t-l,k,j_{k}^{(m,j)}} \left(2a\rho(k) + \sum_{l=0}^{q} c_{t+s-l,k,j_{k}^{(m,j)}} \right)},
 \]
 \[
 \sigma_k^2 = \frac{1}{4\{2a\rho(k) + 1\}}.
 \]
Correlation in dPT
Mixtures in dependent Pólya trees

- It is well known that PT have discontinuities at the partition boundaries.
- Generally \(\Pi = \{ B_{mj} \} \) is defined via the quantiles of \(F_0 \)

\[
B_{mj} = \left(F_0^{-1} \left(\frac{j-1}{2^m} \right), F_0^{-1} \left(\frac{j}{2^m} \right) \right)
\]

- It is possible to diminish the partition effect if we mix with respect to a parameter \(\theta \), i.e. \(\Pi_\theta = \{ B_{mj}^\theta \} \) defined by \(F_0(\cdot \mid \theta) \) with \(\theta \sim f(\theta) \) which implies

\[
\mathcal{F} \sim \int \text{dPT}_q(\Pi_\theta, a, \rho, C)f(\theta)d\theta
\]
Recall our model

\[X_{ti} = \beta_1 X_{t-1,i} + \cdots + \beta_p X_{t-p,i} + \epsilon_{ti}, \]

with \(X_{ti} = 0 \) w.p.1 for \(t < 0 \), and

\[\epsilon_{ti} \mid F_t \overset{iid}{\sim} F_t, \quad \text{for} \quad i = 1, \ldots, n \]

\[\{F_1, F_2, \ldots\} \mid \theta \sim \text{dPT}_q(\prod_\theta, a, \rho, C) \]

\[\theta \sim f(\theta). \]

Specifications:

- \(F_0(\cdot \mid \theta) = N(0, \theta^2) \)
- Fix median at zero: Take \(B_{11} = (\infty, 0] \) and \(B_{12} = (0, \infty) \) with \(F_t(B_{11}) = F_t(B_{12}) = 1/2 \iff Y_{t,1,1} = Y_{t,1,2} = 1/2 \) w.p.1.
Bayesian inference

Priors

- For C:

 $c_{t,m,2j-1} \mid \lambda_{m,2j-1} \overset{\text{ind}}{\sim} \text{Po}(\lambda_{m,2j-1})$, \quad $\lambda_{m,2j-1} \overset{\text{iid}}{\sim} \text{Ga}(\lambda_{m,2j-1})$

 for $t = 1, \ldots, T$, $m = 1, 2, \ldots$ and $j = 1, \ldots, 2^{m-1}$

- For θ:

 $\theta \sim \text{Ga}^{-1/2}(b_1^\theta, b_2^\theta)$

- For the AR coefficients β:

 $\beta_{ki} \overset{\text{iid}}{\sim} \mathcal{N}(0, \sigma_\beta^2)$,

 for $k = 1, \ldots, p$ and $i = 1, \ldots, n$
Data analysis

- Let Y_{ti} be the ITAEE observation for state i at time t
- Remove level, tendency and seasonality via second differences, i.e.
 \[X_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2}), \text{ for } t = 3, \ldots, 46 \]
- Plots of the partial autocorrelation of X_{ti} suggest an autoregressive dependence of order between 2 and 4
- Prior specifications : $(b_1^{\lambda}, b_2^{\lambda}) = (1, 1); (b_1^{\theta}, b_2^{\theta}) = (0.1, 0.1); \sigma_\beta^2 = 100$
- Take a finite tree with $M = 5$ levels, $a = 1$, and $\rho(m) = m^\delta$ with $\delta = 1.1$
- The values (p, q) are determined via the DIC
Data analysis

- Let Y_{ti} be the ITAEE observation for state i at time t

- Remove level, tendency and seasonality via second differences, i.e.
 \[X_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2}), \text{ for } t = 3, \ldots, 46 \]

- Plots of the partial autocorrelation of X_{ti} suggest an autoregressive dependence of order between 2 and 4

- Prior specifications:
 \[(b_{1}^{\lambda}, b_{2}^{\lambda}) = (1, 1); (b_{1}^{\theta}, b_{2}^{\theta}) = (0.1, 0.1); \sigma_{\beta}^2 = 100\]

- Take a finite tree with $M = 5$ levels, $a = 1$, and $\rho(m) = m^\delta$ with $\delta = 1.1$

- The values (p, q) are determined via the DIC

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3020</td>
<td>2720</td>
<td>2552</td>
<td>2676</td>
<td>2671</td>
<td>2644</td>
<td>2682</td>
</tr>
<tr>
<td>2</td>
<td>2606</td>
<td>2139</td>
<td>2136</td>
<td>2015</td>
<td>1947</td>
<td>2086</td>
<td>2046</td>
</tr>
<tr>
<td>3</td>
<td>2664</td>
<td>2438</td>
<td>2295</td>
<td>2264</td>
<td>2324</td>
<td>2290</td>
<td>2394</td>
</tr>
<tr>
<td>4</td>
<td>2566</td>
<td>2409</td>
<td>2340</td>
<td>2237</td>
<td>2228</td>
<td>2190</td>
<td>2383</td>
</tr>
</tbody>
</table>
Second differences

![Graph showing second differences with time on the x-axis and density on the y-axis.](image-url)
Estimated $c_{t,m,j}$ parameters

Figure: $m = 2$ and $j = 3$ (solid line); $m = 3$ and $j = 5$ (dashed line); and $m = 4$ and $j = 9$ (dotted-dashed line)
Estimated error distribution
Quantiles of the error distributions
\[P(\beta_{ki} > 0 \mid \text{data}) \]
References

