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Bayesian Regression Models

Luis E. Nieto-Barajas and Enrique de Alba

Department of Statistics, ITAM and Vice Presidency, INEGI

Chapter preview. In this chapter we approach many of the topics of the previous chapters, but from
a Bayesian viewpoint. Initially we cover the foundations of Bayesian inference. We then describe the
Bayesian linear and generalized regression models. We concentrate on the regression models with
zero-one and count response and illustrate the models with real datasets. We also cover hierarchical
prior specifications in the context of mixed models. We finish with a description of a semiparametric
linear regression model with a nonparametric specification of the error term. We also illustrate its
advantage with respect to the fully parametric setting using a real data set.

14.1 Introduction

The use of Bayesian concepts and techniques in actuarial science dates back to Whitney (1918) who
laid the foundations for what is now called empirical Bayes credibility. He mentions that the solution
of the problem “depends upon the use of inverse probabilities”. This is the term used by T. Bayes
in his original paper (e.g. Bellhouse, 2004). However, Ove Lundberg was apparently the first one
that realized the importance of Bayesian procedures (Lundberg, 1940). In addition, Bailey (1950)
put forth a clear and strong argument in favor of using Bayesian methods in actuarial science. To
date, the Bayesian methodology is used in various areas within actuarial science, see for example
Klugman (1992), Makov (2001), Makov et al. (1996) and Scollnik (2001). Taking a brief look at
recent issues of the main journals in the field shows that Bayesian applications appear regularly
and cover a broad range of actuarial topics, e.g.: mortality modeling (Cairns et al., 2011); extreme
observations (Cabras and Castellanos, 2011); mixture models (Bernardi et al., 2012); premium
policies (Landriault et al., 2012); loss reserving (Shi et al., 2012).

Bayesian methods have several advantages that make them appealing for their use in actuarial
science. First, they allow the actuary to formally incorporate expert or existing prior information.
This prior information can be in the form of global or industry-wide information (experience) or in
the form of tables. In this respect it is indeed surprising that Bayesian methods are not used more
extensively, since there is a wealth of “objective” prior information available to the actuary. In fact,
the “structure distribution” frequently used in credibility was originally formulated in a Bayesian
framework (Bühlmann, 1967).

The second, advantage of Bayesian methods is that the analysis is always done by means of
the complete probability distribution for the quantities of interest, either the parameters, or the
future values of a random variable. Actuarial science is a field where adequate understanding and
knowledge of the complete distribution is essential. In addition to expected values we are usually
looking at certain characteristics of probability distributions, e.g. ruin probability, extreme values,
value at risk (VaR), and so on.

From a theoretical point of view, Bayesian methods have an axiomatic foundation and are derived
from first principles (Bernardo and Smith, 2000). From a practical perspective, Bayesian inference
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is the process of fitting a probability model to a set of data and summarizing the uncertainty
by a probability distribution on the parameters of the model and on unobserved quantities, such
as predictions for new observations. A fundamental feature of Bayesian inference is the direct
quantification of uncertainty. To carry it out, the actuary must set up a full probability model (a
joint probability distribution) for all observable and unobservable quantities in a given problem.
This model should be consistent with knowledge about the process being analyzed. Then, Bayesian
inference about the parameters in the model or about unobserved data are made in terms of
probability statements that are conditional on the observed data (posterior distributions). Hence,
these methods provide a full distributional profile for the parameters, or other quantities of interest,
so that the features of their distribution are readily apparent, for example, nonnormality, skewness,
tail behavior, or others. To obtain these posterior distributions, Bayesian methods combine the
prior available information, no matter how limited, with the theoretical models for the variables of
interest. Therefore Bayesian models automatically account for all the uncertainty in the parameters.

14.2 The Bayesian Paradigm

Bayesian theory is developed from the axiomatic system of the foundations of decision theory. In
some references the dual concepts of probability and utility are formally defined and analyzed.
Probabilities are considered “degrees of belief” of the analyst about the occurrence of a given event
and the criterion of maximizing expected utility is seen to be the only criterion compatible with the
axiomatic system. Statistical inference is viewed as a particular decision problem, and statistical
inference, whether estimation or prediction, must follow the laws of probability. As a result, the
uncertainty of all unknown quantities is described in terms of probability distributions which implies
that these quantities are treated as random variables. The fact that parameters have a distribution
function allows the application of Bayes’ Theorem to combine information coming from the data
with prior information about the parameters. For a comprehensive exposition on the foundations
see Bernardo and Smith (2000) and references therein.

The ensuing methodology establishes how to formally combine an initial (prior) degree of belief
of a researcher with currently measured, observed data, in such a way that it updates the initial
degree of belief. The result is called posterior belief. This process is called Bayesian inference since
the updating process is carried out through the application of Bayes Theorem. The posterior belief
is proportional to the product of the two types of information, the prior information about the
parameters in the model, and the information provided by the data. This second part is usually
thought of as the objective portion of the posterior belief. We explain this process as follows:

Let y = (y1, y2, . . . , yn) be independent random variables, each of them coming from a probability
model with density function f(yi|θ), where θ is a parameter vector that characterizes the form of
the density. Then f(y|θ) =

∏n
i=1 f(yi|θ) is the joint probability density of y given θ that is usually

referred to as the likelihood function. Prior available information on the parameter is described
through a prior distribution π(θ) that must be specified or modeled by the actuary. Then, from a
purely probabilistic point of view, it follows that

π(θ | y) =
f(y | θ)π(θ)

f(y)

where f(y) is the marginal joint density of y defined as f(y) =
∫
f(y|θ)× π(θ) dθ if θ is continuous,

and f(y) =
∑

θ f(y|θ)π(θ) if θ is discrete. This is Bayes’ Theorem that rules the updating of the
information. Considering that f(y) is just a constant for θ, then the updating mechanism can
be simply written as π(θ|y) ∝ f(y|θ)π(θ), where ∝ indicates proportionality. In other words, the
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posterior distribution of the parameters, conditional on the observed data, is proportional to the
product of the likelihood function and the prior degree of belief. Any inference on the parameters
is now carried out using the posterior distribution π(θ|y).

As was mentioned above, the only criterion for optimal decision making, consistent with the
axiomatic system, is the maximization of the expected utility. Alternatively, this criterion is equiv-
alently replaced by the minimization of a loss function. Therefore, in the Bayesian framework
parameter estimation is done by minimizing the expected value of a specified loss function l(θ̂, θ)
with respect to θ̂, where the expected value is taken with respect to the posterior distribution of
the parameter θ given the data y. In particular, a quadratic loss function l(θ̂, θ) = (θ̂ − θ)2 leads
to the posterior mean θ̂ = E(θ|y) as an optimal estimate for the parameter. On the other hand, a
linear loss function l(θ̂, θ) = |θ̂ − θ| yields the median of the posterior distribution as an optimal
estimate θ̂ for θ.

Nuisance parameters are handled in a very straightforward fashion within the Bayesian setting
via marginalization. For example, if the parameter has two components, say θ = (φ, λ) where φ
is the parameter of interest and λ is the nuisance parameter, inference is done using the marginal
posterior distribution π(φ|y) =

∫
π(φ, λ|y) dλ.

When the main purpose of modeling is prediction, then the observed data y are used to predict
future observations yF by means of the posterior predictive distribution . Assuming continuous
random variables to simplify presentation, the predictive distribution is defined as

f(yF |y) =
∫
f(yF |θ)π(θ|y) dθ (14.1)

The parameters in the model have been marginalized (integrated out). Therefore, only information
in the observed data is used in prediction. Finally, the optimal point predictor ŷF , assuming a
quadratic loss function, is the mean of the predictive distribution E(yF |y).

To summarize, the Bayesian inference method can be thought of as comprising the following
principal steps:

i. Specify the prior beliefs in terms of a probability model. This should reflect what is known about
the parameter prior to observing the data.

ii. Compute the likelihood function in terms of the probability model that gave rise to the data.
This contains the observed information about the parameters.

iii. Apply Bayes’ Theorem to derive the posterior density. This posterior belief expresses what we
know about the parameters after observing the data together with the prior belief.

iv. Derive appropriate inference statements about the parameter from the posterior distribution,
and about future observations from the posterior predictive distribution.

There is a vast literature on how to specify a prior distribution. One of the most common
approaches is to use the family of natural conjugate priors. A prior distribution π(θ) is said to
be a natural conjugate for θ if, when combining it with the sample information, π(θ) and the
resulting posterior π(θ|y) belong to the same family. These priors can be used to produce vague
or diffuse priors, which reflect knowing little or having no prior information about the parameter,
or to produce informative priors that reflect the prior knowledge of the actuary. In either case this
is achieved by setting the parameters of the prior to an appropriate value. In particular, vague
priors are obtained by letting the prior variance to be large, but in fact these priors are just an
approximation of what are called noninformative (or objective) priors (e.g. Berger, 2006). More
details about Bayesian thinking can be found in Chapter 13.
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14.3 Generalized linear models

14.3.1 Linear models

The linear regression model is a way of expressing the relationship between a dependent or response
variable y and a set of p−1 independent or explanatory variables x′ = (1, x1, . . . , xp−1), via a linear
combination with coefficients β′ = (β0, . . . , βp−1) of the form x′β = β0 + β1x1 + · · · + βp−1xp−1.
This relationship can be expressed in terms of a linear equation with an additive random error ε
such that

y = x′β + ε, (14.2)

where ε is interpreted as a measurement error and is assumed to have zero mean and constant
precision (reciprocal of the variance). If we further assume that the error comes from a normal
distribution, then ε ∼ N(0, τ).

The normal assumption in the error term implies that the response variable y, conditional on x,
also follows a normal model and thus can take any possible value on the real line. Generalized linear
models extend this assumption to response variables with positive, bounded or discrete outcomes.
For example, if one is desired to describe the behavior of the amounts in insurance claims or the
number of claims in a certain period of time, the normal assumption would not be adequate in
either case since claims cannot be negative and the number of claims are positive and discrete.

The role played by the explanatory variables x in the linear normal (linear regression) model is
to help in understanding the average or mean behavior of the response variable y. This is why the
(conditional) expected value E(y|x) is equal to a linear combination of the explanatory variables
x′β. This justifies the name regression to the mean of the linear regression model (14.2).

The linear regression model is a particular case of the larger class of generalized linear models.
We will discuss its properties and Bayesian inference in the following sections.

14.3.2 Generalized linear models

A Bayesian generalized linear model is a generalized linear model together with a specification of
the prior beliefs of the unknown parameters. It can be said that generalized linear models are also
regression models to the mean (of y) but in a non linear form since the parameter space of E(y|x) is
not necessarily the whole real line. Let us start by recalling the form of a generalized linear model.
In order to account for all possible kinds of response variables (positive, bounded, discrete, etc.)
the model describes the probabilistic behavior of the responses with a member of the exponential
family. Then, for a sample of independent random variables y1, y2, . . . , yn, each of them comes from
the model

f(yi | θi, φi) = b(yi, φi) exp[φi{yiθi − a(θi)}], (14.3)

where a(·) and b(·) are two monotonic functions. The parameters θi and φi are known as natural
and dispersion parameters, respectively. It is not difficult to show that the mean and variance of yi

can be expressed in terms of derivatives of function a(·) as follows:

µi = E(yi) = a′(θi) and σ2
i = Var(yi) =

a′′(θi)
φi

.

Here prime and double prime denote first and second derivative, respectively. Note that generalized
linear models have also been described in Chapter 5 with an slightly different parameterization of
the exponential family.

Each individual i has its own set of explanatory variables xi, i = 1, . . . , n. These will be combined
in a single value through a linear combination with coefficients β′ = (β0, β1, . . . , βp−1) forming what
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is called the linear predictor ηi = x′iβ = β0 +β1xi1 + · · ·+βp−1xi,p−1. We note that linearity means
linear in the coefficients since the linear predictor could well be a polynomial of order p− 1 of the
form β0 + β1xi + · · ·+ βp−1x

p−1
i with a single explanatory variable for individual i, xi.

The idea of the generalized linear models is to model the mean of the response variable, µi = E(yi),
in terms of the explanatory variables via the linear predictor ηi and an appropriate transformation
g(·), that is, ηi = g(µi). The function g(·) is called link function because it links the explanatory
variables with the response. At the same time, the link function adjusts the parameter space of µi

to correspond to the values of the predictor ηi, which is typically the real line. This can be seen
as µi = g−1(ηi). A particular choice for the link function g(·) is to take g−1(·) = a′(·). In this case
the linear predictor ηi becomes equal to the natural parameter θi and g(·) is called canonical link
function. Other options for the link function are available, as long as the domain of the function
g(·) corresponds to the parameter space of µi and the image to the real numbers. Let us consider
a couple of examples to illustrate these ideas.

It can be shown that the normal linear regression model is also a generalized linear model. To
see this we take yi ∼ N(µi, τi) parameterized in terms of mean µi and precision (reciprocal of the
variance) τi. The density function is

f(yi | µi, τi) = (2π/τi)−1/2 exp
{
−τi

2
(yi − µi)2

}

for yi ∈ IR, µi ∈ IR and τi > 0. Writing the normal density as in (14.3) we get

φi = τi, b(yi, φi) = (2π/φi)−1/2 exp
{

φi

2 y
2
i

}

θi = µi, a(θi) = θ2
i
2

In this case a′(θi) = θi and thus the canonical link is g(µi) = µi. Therefore the mean µi is modeled
directly with the linear predictor ηi obtaining the linear model µi = x′iβ.

A second example, suitable for response variables in the positive real line (as is the case for claim
amounts in insurance companies), is to consider a response with gamma distribution. Using a mean
parameterization of the gamma, that is, yi ∼ Ga(αi, αi/µi) such that E(yi) = µi, then the density
function is of the form

f(yi | αi, µi) =
(
αi

µi

)αi 1
Γ(αi)

yαi−1
i e

−αi
µi

yi ,

for yi > 0 and αi, µi > 0. Writing this gamma density as in (14.3) we get

φi = αi, b(yi, φi) = φ
φi
i

Γ(φi)
yφi−1

i

θi = − 1
µi
, a(θi) = log

(
− 1

θi

)

Computing the derivative of the function a(·) we obtain a′(θi) = 1/θi, implying a canonical link
g(µi) = −1/µi. We note that this link has a problem, its domain is fine since it corresponds to the
parameter space of µi, however, the image of g(·) is the negative numbers and not the real line.
An alternative link function that overcomes this flaw is to take g(µi) = log(µi), where the domain
and image are as desired. Another important point about the gamma model, when using the mean
parameterization, is that the variance is also a function of the mean, i.e., Var(yi) = µ2

i /αi. This
implies that both mean and variance will be a function of the explanatory variables, solving so
the problem of heteroscedasticity not accounted for in a normal linear model. More examples for
response variables in {0, 1} and for count variables will be presented in the following sections.
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Once we have defined the sampling model for the data, a Bayesian model is completed by assign-
ing prior distributions to the unknown quantities. A typical assumption in the previously defined
generalized linear models, is to consider a common dispersion parameter φi = φ for all individuals
i = 1, . . . , n. In this case, the set of unknown parameters in the model is (β, φ). According to West
(1985), conjugate priors for these parameters are available only in very special cases. In general,
posterior distributions are not available in closed forms so the choice of the prior has to do with
the simplicity to accommodate prior beliefs. In this context a normal prior for the vector β has
been the common choice, together with a gamma prior for the precision φ. Typically assuming
independence a-priori among the βj elements of β and between β and φ. The normal and gamma
are well known models that allow the user to specify prior beliefs in terms of mean and precision
(reciprocal of variance). That is, we can take a priori βj ∼ N(b0, t0), where b0 is the prior mean
and t0 the prior precision for βj . In the case of little or no information about βj we can set b0 = 0
together with t0 close to zero, say 0.1, 0.01 or 0.001, for j = 1, . . . , p. For the sampling precision
parameter φ, if µφ and σ2

φ represent the prior mean and variance, then we can take φ ∼ Ga(a0, a1)
with a0 = µ2

φ/σ
2
φ and a1 = µφ/σ

2
φ. Again, in the case of little or no prior information about φ, we

can set a0 = a1 equal to a small value, say 0.1, 0.01 or 0.001, in such a way that φ has prior mean
one and large/small prior variance/precision. Alternatively, more diffuse priors are also considered
for the coefficients βj , for instance a student-t prior or even a cauchy prior (Gelman et al., 2008).

Posterior inference of the parameters (β, φ) requires to combine the information provided by the
data, summarized in the likelihood function, and the prior distributions. The likelihood function
is constructed by the product of the density (14.3) of the response variables as a function of the
explanatory variables and the parameters, that is, lik(β, φ) =

∏n
i=1 f(yi| θi, φ). Remember that the

explanatory variables enter the model via the natural parameter θi, which in the case of using the
canonical link θi = x′iβ, otherwise θi is replaced with an appropriate function of the linear predictor
ηi. Finally, the posterior distribution π(β, φ| data) is proportional to the product of this likelihood
function lik(β, φ) and the prior distributions π(β, φ). Point estimates and credible intervals are
obtained as summaries from this posterior distribution. A Bayesian credible interval is also known
as a posterior probability interval, and is not to be confused with a frequentist confidence interval.
For example, a 95% posterior interval for a parameter is an interval that contains exactly 95% of
that parameters posterior probability. More details on this can be found in (e.g. Gelman et al.,
2008, pag. 38).

Posterior summaries are obtained numerically via a MCMC sampling algorithm or via EM
techniques. The former can be implemented in OpenBugs (http://www.openbugs.info/) within R
through the library R2OpenBUGS. The latter is implemented in the R command bayesglm from the
package arm (data analysis using regression and multilevel/hierarchical models). Both are available
in the Comprehensive R Archive Network (CRAN) at http://www.r-project.org/. All the examples
presented in this chapter were run in OpenBugs within R and the corresponding code will be given
in each case. In all cases the Markov Chains were run for 20,000 iterations with a burn in period of
5,000 and keeping one of every 5th iterations for computing the estimates. See Chapter 13 for the
meaning of these numbers.

Another aspect of interest when using generalized regression models is prediction of future out-
comes. This inference problem is addressed naturally in the Bayesian approach by computing the
predictive distribution for a future observation yF . If a new individual has explanatory variables
xF , and assuming the canonical link, then θF = x′F β and the predictive distribution will be the
weighted average of the density f(yF | θF , φ) with respect to the posterior distribution π(β, φ|data)
as in (14.1). Point or interval predictions are produced using summaries from this predictive distri-
bution. This is usually done numerically.

Traditionally, the goodness of fit measure used to compare generalized linear models is the de-
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Table 14.1 Bugs code for model of Example 14.1.
model{
#Likelihood

for (i in 1:n){
y[i]∼dnorm(mu[i],tau)
mu[i]<-a[1]+a[2]*z2[i]+a[3]*z3[i]+a[4]*z4[i]+a[5]*z5[i]+a[6]*z6[i]+a[7]*z7[i]

+b[1]*x[i]+b[2]*x[i]*z2[i]+b[3]*x[i]*z3[i]+b[4]*x[i]*z4[i]+b[5]*x[i]*z5[i]

+b[6]*x[i]*z6[i]+b[7]*x[i]*z7[i]

}
#Priors

for (j in 1:7){
a[j]∼dnorm(0,0.001)
b[j]∼dnorm(0,0.001)
}
tau∼dgamma(0.001,0.001)
}

viance (see, Chapter 5). However, in a Bayesian context, model comparison is typically made
by using the Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002) which is based on
the deviance but includes a penalization for the number of parameters used in the model. Let
D(θ) = −2 log f(y|θ) then DIC = 2 Eθ|y(D) − D(θ̂), with θ̂ = E(θ|y). Smaller values of DIC
indicate a better fit.

Example 14.1. The insurance market in Mexico operates in different classes. Seven of these are:
Accident and sickness (ACC), agriculture and livestock (AGR), automobiles (AUT), major medical
expenses (MED), fire (FIR), liability and professional risks (LIA) and health (HEA). It is of interest
to the insurance companies to predict claim amounts yi in terms of the premiums written xi, both
measured in millions of Mexican pesos. The insurance industry regulator in Mexico gathers the
information from all different insurance companies every year and makes the information available
in its web page http://www.cnsf.gob.mx/. The information is available for all 32 Mexican States,
and in some cases from abroad (4 in this case). In total, for the year 2010, we have i = 1, . . . , n with
n = 228 observations classified by insurance sector. The dataset can be found in the Web Appendix
of the book. A dispersion diagram of the 228 observations in logarithmic scale is presented in Figure
14.1. From the graph we can see that all sectors together follow a common pattern and a single
line could potentially serve for fitting the data. In fact, the least square estimates are 0.0008 for
the intercept and 0.85 for the slope.

Let us assume that the logarithm of the claim amounts log(yi) follows a normal distribution with
mean µi and constant precision τ , that is log(yi) ∼ N(µi, τ). We model the mean level µi in terms
of a linear combination of the premiums written in log scale log(xi) and class indicators zji, for
j = 2, . . . , 7, where for example z2i takes the value of one if observation i belongs to sector 2 (AGR),
and so on, following the order of the sectors in the previous paragraph. These sector indicators will
serve to determine possible differences in the intercepts and the slopes by including the interactions
log(xi)×zji. The mean level is thus modeled as µi = α1+

∑7
j=2 αjzji+β1 log(xi)+

∑7
j=2 βj log(xj)zji.

Note that to avoid indetermination of the model, the indicator for sector one is not present, so
sector one has been taken as baseline. An individual i coming from sector one is identified by
assigning zeroes to all sector indicators zji, j = 2, . . . , 7. For the model coefficients we assign
vague normal priors centered at zero and with small precision, that is, αj ∼ N(0, 0.001) and βj ∼
N(0, 0.001) independently for j = 1, . . . , 7. For the common precision of the observations we take
τ ∼ Ga(0.001, 0.001) such that τ has mean one and large variance a-priori. The R (Bugs) code of
this model is given in Table 14.1.
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Figure 14.1 Dispersion diagram of severity amounts yi versus premium written xi in logarithmic
scale for i = 1, . . . , 228 individuals. Straight line corresponds to a least square fit to the data.

Posterior estimates of the model coefficients and their credible intervals are presented in the
second and third columns in Table 14.2. If the hypothesis of a single regression line for all sectors
were true then coefficients αj and βj for j = 2, . . . , 7 would all need to be zero. As we can see from
the table, except for α5, the rest of the coefficients are all different from zero implying different
intercepts α1 + αj and different slopes β1 + βj for each sector j. These differences can be better
appreciated graphically in Figure 14.2 where each colored line corresponds to a different sector.
From the graph it is noticeable that sector ACC, represented by the black line, is the one that
deviates the most from the general pattern of Figure 14.1. This large difference is mostly explained
by the extreme observation with coordinates (−5.11, 3.41) in logarithmic scale. This observation
corresponds to an unfortunate event occurred abroad with a premium of 0.006 millions and a claim
amount of 30.45 millions of Mexican pesos. A simple solution to describe the general pattern in
the ACC sector would be to remove this observation from the analysis. An alternative solution is
to consider a model that is more robust to extreme observations like the semiparametric regresion
model with a Polya tree prior for the errors, that will be described in Section 14.5. Finally, the
posterior mean of the observations precision τ is 1.55 with 95% credible interval (CI) (1.26, 1.86).

14.3.3 Bayesian regression with zero-one dependent variables

In actuarial science and risk management, it is of interest to estimate the probability of default. For
instance, when assigning a personal credit (loan) to an individual, the financial institution needs
to quantify the risk of default, according to the individual personal characteristics and financial
history. This problem can be modeled by assuming a zero-one (Bernoulli) response variable yi, with
probability of success (default) µi, that is, yi ∼ Ber(µi) with density function given by

f(yi | µi) = µyi(1− µi)1−yi ,
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Table 14.2 Posterior estimates and credible intervals of multiple regression coefficients in the
insurance dataset. Parametric and semiparametric formulations.

Parametric Semiparametric
Coef. Mean 95% CI Mean 95% CI

α1 1.77 (1.34, 2.20) 0.48 (-0.10, 1.63)
α2 -1.29 (-2.24, -0.32) -1.00 (-2.20, -0.23)
α3 -2.21 (-4.22, -0.15) -0.45 (-2.01, 0.63)
α4 -2.92 (-4.01, -1.72) -1.79 (-2.99, -1.01)
α5 -0.96 (-2.11, 0.15) -0.66 (-2.30, 0.54)
α6 -2.49 (-3.48, -1.54) -1.47 (-2.46, -0.63)
α7 -1.57 (-2.11, -1.06) -0.11 (-1.19, 0.57)
β1 0.26 (0.14, 0.38) 0.64 (0.41, 0.80)
β2 0.39 (0.13, 0.64) 0.31 (0.12, 0.57)
β3 0.76 (0.45, 1.06) 0.32 (0.13, 0.62)
β4 0.84 (0.61, 1.04) 0.48 (0.27, 0.73)
β5 0.41 (0.17, 0.67) 0.24 (-0.01, 0.57)
β6 0.58 (0.35, 0.84) 0.25 (0.01, 0.45)
β7 0.49 (0.33, 0.65) 0.13 (-0.04, 0.31)

−5 0 5 10

−
2

0
2

4
6

8

log(x)

lo
g(

y)

Figure 14.2 Dispersion diagram of claim amounts yi versus premiums written xi in logarithmic scale
by class. Straight lines corresponds to model fit by sector. Colors indicate different sector: black
(ACC), red (AGR), green (AUT), blue (MED), cyan (FIR), magenta (LIA) and yellow (HEA).

for yi ∈ {0, 1} and µi ∈ (0, 1). Writing this density as in (14.3), to identify the model as a member
of the exponential family, we get

φi = 1, b(yi, φi) = 1

θi = log
{

µi

1−µi

}
, a(θi) = log(1 + eθi)
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The first derivative of function a(·) is a′(θi) = eθi/(1 + eθi). Inverting this function to obtain the
canonical link we get g(µi) = log{µi/(1 − µi)}. See also Chapter 3 for more details on regression
models with categorical dependent variables.

A generalized linear model for a Bernoulli response with canonical link is called logistic regression
model. Recall that other link functions can be used as long as the domain of function g(·) corresponds
to the parameter space and the image to the real line. Since the parameter space of µi is the
interval (0, 1), any function that transform the (0, 1) interval into the real numbers is a suitable
link function. In the basic probability courses we learnt that cumulative distribution functions
(c.d.f.) for continuous random variables are functions with real domain and (0, 1) image. Therefore,
the inverse of any continuous c.d.f. F (·) can be a link function, that is, g(·) = F−1(·). In particular
if F = Φ, the c.d.f. of a standard normal, then g(·) = Φ−1(·) produces the probit regression model.
In fact, the inverse of the canonical link corresponds to the c.d.f. of a logistic random variable,
and thus the name of logistic regression. Two other common link functions are the log-log link
g(µi) = log{− log(µi)} and complementary log-log link g(µi) = log{− log(1− µi)}. This latter link
corresponds to the inverse of the c.d.f. of a extreme value distribution. Whatever the link function
we choose, for a given vector of explanatory variables of individual i, the probability of success is
expressed in terms of the explanatory variables as µi = g−1(ηi) = F (x′iβ).

Sometimes several individuals share the same value of the explanatory variables, or it is also
possible that available information is grouped and the covariate information is only available at
the group level. This is the case, for example, in insurance groups where it is assumed that all
individuals in the same group show similar risk characteristics and the number of claims yi out of
ni members in group i is reported. In such a case it is of interest to estimate the severity (probability
of presenting a claim) πi for group i with characteristics xi. These kind of data can also be modeled
with a generalized linear model by assuming yi ∼ Bin(ni, πi) and πi = F (x′iβ) with a specific choice
of continuous c.d.f. F−1(·) as link function.

For both models, Bernoulli and Binomial, the precision parameter φi is equal to one, and for
the grouped data, the number of individual in the group ni is assumed known. This leaves us with
one set of unknown parameters β. For each βj , j = 1, . . . , p, we assign normal and student-t prior
distributions as suggested above.

Example 14.2. The Mexican Central Bank is responsible for issuing the required number of bills
for the well functioning of the economy. Table 14.3 contains the information on the number of
bills in circulation and the number of fake bills, both in million pieces, for different denominations
($20, $50, $100, $200 and $500 Mexican pesos). This information is available anually from the
year 2000 to 2011. Let us disregard temporal dependence and assume that the number of fake
bills yi follows a binomial distribution with parameters ni, the number of circulating bills, and πi,
the proportion of fake bills with respect to the real bills circulating, that is yi ∼ Bin(ni, πi), for
i = 1, . . . , n with n = 60 observations. To help understand the information contained in Table 14.3,
we present boxplots of the crude proportion of fake bills for every thousand circulating bills, that is
π̂ = yi/ni × 1000. Figure 14.3 shows these fake proportions across the different bill denominations,
being the $20 bill the least falsified bill with low dispersion and the $50 bill the most falsified with
a large dispersion along the years. On the other hand, Figure 14.4 presents the fake proportions
across the years, showing a decreasing path in time, both in location and dispersion.

To identify the bill denomination we construct auxiliary dummy variables, say xji, j = 1, . . . , 5
for each of the five bill denominations $20, $50, $100, $200 and $500 respectively, such that xji takes
the value of one if observation i corresponds to the bill denomination j and zero otherwise. We then
define a first model (Model A) with a linear predictor of the form ηi = α+

∑5
j=1 βjxji. By consider-

ing a different parameter βj for each denomination plus an intercept, Model A is overparametrized
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Table 14.3 Number of bills in circulation (C) and number of fake bills (F), in million pieces, for
different bill denominations for years 2000 to 2011.

Year C20 F20 C50 F50 C100 F100 C200 F200 C500 F500
2000 2182.1 14.8 3141.4 179.7 2779.4 178.5 4163.4 83.9 1100.7 26.6
2001 2092.6 13.1 2900.9 150.5 2795.0 136.8 4745.5 64.4 1335.0 20.9
2002 2182.4 18.1 3026.5 109.7 3155.5 64.2 5192.1 97.3 1802.1 35.7
2003 2449.1 9.4 4245.0 140.9 4455.4 60.1 4870.4 77.6 2352.4 42.9
2004 2545.8 1.5 4031.8 149.2 4951.7 117.8 5087.4 80.5 3028.0 34.0
2005 2707.8 1.0 3420.2 249.3 4411.0 142.9 5422.1 117.8 3522.5 43.6
2006 2877.4 0.7 3615.2 215.1 4625.9 106.5 5935.6 88.8 4190.9 70.9
2007 2959.8 0.6 3847.5 122.5 4768.0 77.1 6358.0 78.6 4889.7 90.5
2008 3360.9 1.0 3892.8 59.4 4830.2 87.6 6850.7 97.7 5682.5 91.7
2009 3578.6 3.2 4129.0 28.3 4872.5 81.0 7314.7 136.3 6934.4 91.2
2010 3707.6 2.7 4197.3 67.9 5210.0 101.2 7505.1 139.7 7799.3 96.4
2011 3858.8 1.3 4375.1 208.9 5416.0 88.7 7528.1 120.1 8907.4 89.7

Source: Banco de México. http://www.banxico.org.mx/estadisticas/index.html.

Bill20 Bill50 Bill100 Bill200 Bill500
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60

Figure 14.3 Boxplots of crude fake proportions multiplied by 1000 for the different bill denominations
in Table 14.3.

and the βj ’s will not be estimable. To identify the parameters we include the constraint
∑

j βj = 0.
We will compare the logistic and standard normal links. These two links imply πi = eηi/(1 + eηi)
and πi = Φ(ηi) respectively. For the prior distributions on a and the bj ’s, we consider two alter-
natives N(0, 0.001) and St(0, 0.001, 3). Note that the third parameter in the student-t distribution
correspond to the degrees of freedom which has to be greater than 2. We chose 3 to avoid numerical
problems. This model is translated into R (Bugs) code as shown in Table 14.4. Note that the last
two rows of the code describe the inclusion of the parameters constrain.

To compare the different models, we compute the deviance information criteria (DIC). This
value is easily obtained from the library R2OpenBUGS. Table 14.5 shows the DIC values for the
competing models. As can be seen from the table, the logit link is preferred to the probit link for
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Figure 14.4 Boxplots of crude fake proportions multiplied by 1000 for the different years in Table
14.3.

Table 14.4 Bugs code for model A of Example 14.2.
model{
#Likelihood

for (i in 1:n){
y[i]∼dbin(pi[i],e[i])
logit(pi[i])<-a+b[1]*x20[i]+b[2]*x50[i]+b[3]*x100[i]+b[4]*x200[i]+b[5]*x500[i]

#probit(pi[i])<-a+b[1]*x20[i]+b[2]*x50[i]+b[3]*x100[i]+b[4]*x200[i]+b[5]*x500[i]

}
#Priors

a∼dnorm(0,0.001)
for (j in 1:5){
b[j]∼dnorm(0,0.001)
#b[j]∼dt(0,0.001,3)}
#Estimable parameters

a.adj<-a+mean(b[])

for (j in 1:5){b.adj[j]<-b[j]-mean(b[])}

this particular dataset, regardless of the prior distribution used. When comparing the two priors,
the fit is practically the same, with a neglegible advantage for the normal model. For producing
inference of the model parameters we select the logit-normal model since it achieved the smallest
DIC value.

We define the rate of fake bills for every thousand circulating bills as pj = eα+βj/(1+eα+βj )×1000,
for each of the five bill denominations j = 1, . . . , 5. Table 14.6 contains posterior point estimates
(posterior means) as well as 95% credible intervals. Interpreting the estimated rates, the $50 pesos
bill has the largest fake rate with 37.5 fake bills for every 1000 circulating bills. On the other
hand, the $20 pesos bill shows the smallest rate with almost 2 fake bills for every 1000 circulating.
According to Figure 14.3, the distribution of crude proportions for the $200 and $500 denominations
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Table 14.5 Deviance information criteria (DIC) for four binomial generalized models fitted to the
Mexican Central Bank data.

Model A Model B
Prior logit probit logit probit

Normal 1295.87 1297.45 901.98 919.38
Student-t 1295.98 1297.49 902.02 919.44

Table 14.6 Posterior inference for the rate of fake bills for every thousand circulating bills, pi,
i = 1, . . . , 5, using the Mexican Central Bank data. Reported are, posterior mean and 95% credible

intervals.

Model A Model B
$ rate mean 2.5% 97.5% mean 2.5% 97.5%

20 p1 1.95 1.53 2.45 1.95 1.51 2.44
50 p2 37.50 35.75 39.28 37.10 35.33 38.90
100 p3 23.77 22.49 25.10 23.87 22.56 25.22
200 p4 16.66 15.73 17.63 16.65 15.72 17.63
500 p5 14.24 13.23 15.27 15.48 14.37 16.63

seem to overlap. However, inference coming from the binomial-logistic-normal model shows that
these rates have 95% credible intervals that do not intersect, (13.23, 15.27) for the $500 bill and
(15.73, 17.63) for the $20 bill. In fact, the posterior probability of p4 > p5 is 0.9995.

As suggested by Gelman et al. (2004), an important aspect of Bayesian inference is to assess
model fitting. Appart from the numerical measures, like the DIC, it is possible to obtain poste-
rior predictive draws from the fitted model and compare them to the actual observed data. This
is known as posterior predictive checking. We sampled yF

i , i = 1, . . . , 60 observations from the
posterior predictive distribution of Model A to mimic the observed data. We computed posterior
predictive proportions for one thousand circulating π̂F

i = yF
i /ni × 1000 and compared them with

the observed ratios for the five bill denominations. The first boxplot in each panel of Figure 14.5
corresponds to the observed proportions and the following five boxplots correspond to 5 replicates
of posterior predictive proportions from model A. As can be seen, these predictive proportions are
highly concentrated and do not capture the variability shown by the data.

To overcome these deficiencies of Model A, we propose a second model (Model B) that accounts
for the differences in the number of fake bills across time. As we did for the bill denominations,
to identify the years we define auxiliary variables tki, k = 1, . . . , 12 for years from 2000 to 2011,
respectively, where tki takes the value of one if observation i occurred in year k and zero otherwise.
Therefore, the linear predictor for Model B has the form ηi = α+

∑5
j=1 βjxji+

∑12
k=1 γktki, together

with the estimability constrain
∑12

k=1 γk = 0. As for Model A, we consider independent normal and
student-t prior distributions for a, bj ’s and γk’s, and also compare between the logit and probit
links. DIC values are reported in Table 14.5. Again, the normal-logit model achieves the best fit.
Additionally, we can compare the fitting with respect to Models A and B. The DIC values for
Model B are a lot smaller than those obtained with Model A, so it is expected to produce better
inferences.

In the last three columns of Table 14.6 we present posterior estimates of the rates of fake bills
for every thousand circulating bills pj , for j = 1, . . . , 5. Point and interval estimates are consistent
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Figure 14.5 Boxplots of posterior predictive checks for the proportion of fake bills for every one
thousand circulating, pi, i = 1, . . . , 5. Reported are observed rates (Obs), five replicates from Model
A (A1, . . . , A5) and five replicates from Model B (B1, . . . , B5).

with those obtained with Model A, except for p5, the proportion of fake $500 pesos bills. Model
B estimates a slightly larger proportion as compared with Model A. In fact, when comparing the
proportions of $200 and $500 bill denominations, the probability of p4 > p5 is 0.9376, not as large
as that of Model A. Finally, we produce posterior predictive checks for Model B and computed π̂F

i

and compare them with the observed proportions. The last five boxplots in each panel of Figure
14.5 correspond to five replicates from Model B. As is clear from the figure, Model B better captures
the variability of the data and the inferences obtained form it are more reliable. Although Model
B has improved on Model A, the model is a little deficient in capturing the variability in the $20
pesos bills p1.

14.3.4 Bayesian regression with count dependent variables

Another common problem in actuarial science is the study of counting or count data. For example,
the number of claims that an insured individual can file during a calendar year. The natural
assumption for a counting response variable yi is a Poisson model, that is yi ∼ Po(µi). This model
has density function given by

f(yi | µi) = e−µi
µyi

i

yi!
,



14.3 Generalized linear models 15

for yi = 0, 1, . . . and µi > 0. Identifying this density as (14.3) we obtain

φi = 1, b(yi, φi) = 1
yi!

θi = log(µi), a(θi) = eθi

Thus the canonical link obtained as the inverse of the derivative of function a(·) is g(µi) = log(µi).
Therefore, the mean of the response variable is modeled as µi = ex

′
iβ. This model is also known as

Poisson regression model. (See also Chapter 4 for regression models with count dependent variables).
Sometimes, instead of modeling the mean µi of a Poisson response variable, it is of interest to

model the rate of occurrence of events λi relative to a known number exposed or at risk ei, such
that µi = eiλi. In this case the rate is modeled through the explanatory variables as λi = ex

′
iβ.

For instance, in mortality studies, the maternity mortality ratio is defined as the rate of maternity
deaths for every 100 thousand births. In such studies the response variable yi is the number of
maternity deaths, ei is the number of births (in 100 thousands) and thus λi becomes the maternity
mortality ratio.

As mentioned before, in regression models with count dependent variables, the Poisson model is
the common assumption, however this model assumes that the mean and variance of the responses
are the same, that is E(yi) = Var(yi) = µi. In practice, this assumption is not always satisfied by
the data, due to an effect of overdispersion (Var(yi) > E(yi)). To account for overdispersion in a
dataset, a different model for the responses has to be used. The negative binomial is the typical
alternative for modeling counting data in the presence of overdispersion, i.e., yi ∼ NB(ri, πi). To
give the parameters of the negative binomial the same interpretation as in the Poisson model,
the integer parameter ri has to coincide with the number of exposed ei and the probability of
success πi with 1/(1 + λi). This implies that E(yi) = eiλi and Var(yi) = eiλi(1 + λi). The quantity
1 + λi = Var(yi)/E(yi) is a measure of the amount of overdispersion present in the data. Finally,
the rate λi is modeled in terms of the explanatory variables xi as in the Poisson model.

In the Bayesian literature (e.g. Bernardo and Smith, 2000) it is well known that a negative
binomial distribution is a particular case of a Poisson-gamma distribution. The latter gets its name
since it can be obtained as a mixture of a Poisson distribution with respect to a gamma distribution.
For the particular parameterization of our negative binomial model yi ∼ NB(ei, 1/(1 + λi)), we
can obtain the same model by considering a conditional Poisson distribution yi|ti ∼ Po(tiλi) and
marginal distribution ti ∼ Ga(ei, 1). Writing the negative binomial in this form allows us to consider
the overdispersion case within the non-overdispersed Poisson setting by taking ti = ei fixed if no
overdispersion is present and ti ∼ Ga(ei, 1) random in the case of overdispersion. This construction
of the negative binomial represents a hierarchical model that will be explained in detail in Section
14.4.

Here, as in the previous model with Bernoulli or binomial response variables, the only set of
unknown parameters is β, so normal and student-t distributions are used to represent prior knowl-
edge.

Example 14.3. Consider the bills dataset presented in Table 14.3. The number of fake $20 pesos
bills is reported in variable F20. These numbers are shown as empty dots in Figure 14.6 and linked
with a solid black line. As can be seen, there is a drastic drop of level in the number of fake bills
around year 2003. This change is explained by the fact that in the early months of 2003 the Bank
of Mexico released a new $20 pesos bill made of polymer instead of regular money paper which is
more difficult to counterfeit. To model these data we propose a generalized linear Poisson regression
model that accounts for a change in the level. Specifically, we assume that the number of fake $20
pesos bills yi follows a Poisson distribution with rate or intensity µi, that is, yi ∼ Po(µi), with
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Table 14.7 Bugs code for model of Example 14.3.
model{
#Likelihood

for (i in 1:n){
y[i]∼dpois(mu[i])
log(mu[i])<-b[1]+b[2]*step(t[i]-a)}
#Priors

a<-c+1999

c∼dcat(p[])
for (j in 1:12){p[j]<-1/12}
for (j in 1:2){b[j]∼dnorm(0,0.001)}
}

log(µi) = β1 + β2I(ti ≥ α), for observations i = 1, . . . , 12. Note that ti corresponds to the year
reported in Table 14.3. We consider N(0, 0.001) independent priors for βj , j = 1, 2 and a uniform
discrete prior for α on the set {2000, 2001, . . . , 2011}. The corresponding R (Bugs) code is presented
in Table 14.7.
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Figure 14.6 Number of fake $20 peso bills from 2000 to 2011. Empty dots (linked with solid black
lines) represent observed values (F20). Red straight lines correspond to rate estimates (solid line)
and 95% credible intervals (dotted lines). Vertical blue dashed-dotted line corresponds to year change
estimate.

The red lines, solid and dotted in Figure 14.6, correspond to the rate µi point estimates and 95%
credible intervals, respectively, for all years. Years 2000 to 2003 (inclusive) have a common rate
of 13.71 million fake pieces per year with a 95% credible interval of (10.17, 17.52), whereas from
2004 to 2011 the rate drops to 1.28 million pieces with a 95% credible interval of (0.69, 2.12). The
posterior distribution for the change year, α, concentrates its probability in only two values, 2003
with a probability of 0.0006, and 2004 with a probability of 0.9994. The estimated change year is
denoted with a blue (dotted-dashed) vertical line in Figure 14.6. Although the new $20 pesos bills
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were introduced at the beginning of 2003, the impact on the counterfeit rate was reflected from
2004 onward. The number of fake bills in 2003 was more similar to the previous years than the
following years. This was captured by the model.

14.4 Mixed and hierarchical models

14.4.1 Mixed models

In the previous section, general regression models for different forms of the response variable were
introduced. Those models are also known as fixed effects models and assume that the observed indi-
viduals (yi,xi), i = 1, . . . , n are independent. In some applications, response variables are observed
over time (longitudinal models), in space (spatial models) or are clustered in groups (repeated mea-
surements). All these cases assume certain kind of dependence among observations. Mixed effects
models, or simply mixed models account for dependence among observations by introducing random
(unobserved) effects in the model. The general specification of a mixed model assumes two sets of
explanatory variables xi and zi such that the former is associated to fixed coefficients β and the
latter to random coefficients αi. Thus, in the context of a generalized linear model, the mixed model
has a linear predictor of the form ηi = x′iβ + α′izi. This is again, linked to the response variable,
through an appropriate link function such that g(µi) = ηi.

To better understand how dependence is introduced in a mixed model, let us consider a nested
structure for the observations, say yij , where j = 1, . . . , ni and i = 1, . . . , n. For example, individual
i could file a total of ni number of claims during a year, with j denoting the specific claim. In this
case, a mixed model for the claim amounts yij , in a generalized linear setting, would have linear
predictor ηij = x′ijβ + αi. Note that the parameter β is the fixed effect component common to all
individuals, whereas αi is a random effect common to all claims j made by the same individual i,
and thus introducing a dependence in those claims made by the same individual.

Specifications for the random effects αi’s may vary according to the application. They could
simply be αi

iid∼ N(0, τ), which is the typical specification in repeated measurements, clustered ob-
servations and longitudinal models. Alternative specifications include spatial effects (α1, . . . , αn) ∼
CAR(ρ, τ), where CAR stands for a conditionally autorregressive model with association parame-
ter ρ and precision τ . This model is a multivariate normal whose precision matrix is based on the
spatial neighborhood structure. We refer the reader to Chapter 10, or alternatively, to Banerjee
et al. (2004), for details. Or temporal effects αi = γαi−1+νi, with νi

iid∼ N(0, τ), following a dynamic
equation to account for dependence over time. We refer the reader to West and Harrison (1997) for
details. In the following subsection we describe an alternative specification for the random effects
that is based on the idea of exchangeability. See Chapter 7 for more details on mixed models.

14.4.2 Hierarchical models

According to Gelman et al. (2004) hierarchical models are the most powerful tool for data analysis.
Hierarchical specifications are usually helpful to specify a joint prior distribution for a set of pa-
rameters. However, they are also useful for specifying the distribution of random effects in a mixed
model.

To describe the construction of a hierarchical model let us consider a simple scenario with response
variables yi, for i = 1, . . . , n, where the distribution of each yi depends on a parameter θ, that is
f(yi|θ). This scenario assumes that there is a unique parameter θ common to all individuals. So
inference on θ will be based on a prior distribution π(θ) and all observations yi’s (as in a traditional
Bayesian analysis with i.i.d. observations). On the other hand, a completely different specification of
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the problem would be to assume that the distribution of each individual i has its own parameter θi,
that is f(yi|θi). In this case, if we further take independent priors π(θi) for all i = 1, . . . , n, inference
on θi will only depend on its prior and the single observation yi, like having n separate analysis.
Hierarchical models present a compromise between these two extreme scenarios by (i) allowing to
have heterogeneity in the parameters by keeping a different θi for each yi, and (ii) allowing to pool
strength across different observations to increase precision in the estimation of the θi’s.

We achieve (i) and (ii) by considering an exchangeable prior distribution for the vector θ′ =
(θi, . . . , θn). Exchangeability can be interpreted as a symmetric condition in the prior such that
each θi has the same marginal distribution and the dependence among any pair (θi, θj) is the same.
We achieve this symmetry in the prior with a two level hierarchical representation of the form:

θi|ψ iid∼ π(θi | ψ), i = 1, . . . , n
ψ ∼ π(ψ)

The parameter ψ is called hyper-parameter and plays the role of an anchor of the θi’s. Condi-
tional on ψ, the θi’s are independent and when ψ is marginalized the θi’s become dependent, i.e.,
π(θi, . . . , θn) =

∫ ∏n
i=1 π(θi|ψ)π(ψ)dψ. The hierarchical model is completed by specifying the dis-

tribution of the data, which in general would be yi ∼ f(yi|θi) independently for i = 1, . . . , n. This
specification is analogous to the so called structure distribution that is frequently used in actuarial
science, specifically in credibility theory.

Hierarchical models are particularly useful for meta-analysis, where information coming from dif-
ferent studies yi is linked via a hierarchical prior distribution on the different parameters (θ1, . . . , θn).
Global or population inference from all studies is usually summarized in terms of the hyper-
parameter ψ.

Example 14.4. Regarding the bills dataset of Table 14.3, consider now that the individuals i are
the different bill denominations for i = 1, . . . , n with n = 5. For each bill denomination i we have
ni = 12 observations j = 1, . . . , ni corresponding to the 12 years. For each observed number of
fake bills yij we assume a Poisson model of the form yij ∼ Po(µi) with log(µi) = βi. Here we
have two options, take independent priors for each βi, say βi ∼ N(0, 0.001) for i = 1, . . . , 5, or
take an exchangeable prior for the vector (β1, . . . , β5) with hierarchical representation given by
βj |β0, τ ∼ N(β0, τ) with β0 ∼ N(0, 0.001) and τ ∼ Ga(10, 1). Here the crucial parameter is τ . Since
τ is a precision parameter for the βi’s, a small value would imply a large uncertainty and will allow
a broad combination of information across different individuals i, whereas a large value reduces the
uncertainty around β0 and constrains the sharing of information across different i’s. The prior we
took for τ , Ga(10, 1) is a slightly informative prior that allows a moderate sharing of information.
The R (Bugs) code of this model is presented in Table 14.8.

Posterior estimates for the two prior choices, independent and hierarchical, are reported in Table
14.9 and presented in Figure 14.7. Numerical values are very similar when using both priors. If
we concentrate in the point estimates of the µi’s we can see that for those denominations with
the smallest rates (F20 and F500) their point estimates increase when using a hierarchical prior
with respect to those with independent priors. On the other hand, for those denominations with
the largest rates (F50 and F100) their point estimates decrease. These effects are the result of
sharing information between models and the estimates tend to compromise among all pieces of
information, but at the same time respect the differences. An advantage of using a hierarchical
prior is that the mean parameter of the coefficients, β0, concentrates the population information
coming from all parameters βi. Posterior estimate of µ = eβ0 , the population counterfeit rate,
is reported in the last row of Table 14.9. This estimate is compared with that obtained from
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Table 14.8 Bugs code for model of Example 14.4.
model{
#Likelihood for (i in 1:5){
for (j in 1:n){y[i,j]∼dpois(mu[i])}
log(mu[i])<-b[i]

}
#Priors

for (i in 1:5){
b[i]∼dnorm(0,0.001)
#b[i]∼dnorm(b0,tau)
}
#b0∼dnorm(0,0.001)
#tau∼dgamma(10,1)
}

Table 14.9 Posterior estimates of fake rates for different bill denominations under distinct
scenarios.

Independent Hierarchical
Coef. Variable Mean 95% CI Mean 95% CI

µ1 F20 5.62 (4.39, 7.06) 5.74 (4.47, 7.20)
µ2 F50 140.16 (133.65, 147.10) 140.15 (133.70, 147.10)
µ3 F100 103.57 (97.79, 109.40) 103.53 (97.85, 109.30)
µ4 F200 98.58 (93.03, 104.05) 98.54 (92.96, 104.20)
µ5 F500 61.17 (56.83, 65.68) 61.22 (56.81, 65.73)

µ F 81.76 (79.54, 84.12) 58.05 (32.04, 96.06)

considering that all observations come from the same model, that is, yij ∼ Po(µ) with log(µ) = β

and prior β ∼ N(0, 0.001). The estimate of µ from this latter model is also included in the last row
in Table 14.9 under the column of Independent prior. These two estimate show great differences.
The model that assumes that all observations come from the same model with a single rate µ
produces an interval estimate which is very narrow showing an enormous precision, whereas the
interval estimate obtained with the hierarchical model acknowledges the uncertainty coming from
the different denomination rates µi producing an overall counterfeit rate estimate for µmore realistic
with a lot less precision. This effect can better be appreciated in the last pair of intervals in Figure
14.7.

14.5 Nonparametric regression

14.5.1 Bayesian nonparametric ideas

The concepts of parametric and nonparametric statistics refer to assumptions that are placed on
the distribution of the available observations. One might assume that a particular dataset was
generated from a normal distribution with unknown mean and precision. This is a parametric
assumption since the N(µ, τ) defines a parametric family. In general, a parametric assumption would
mean that the dataset is assumed to be generated from a member of a parametric family. Once
a parametric assumption has been placed on a dataset, the objective is to estimate the unknown
quantities, which is typically a finite number of parameters that define the model. A nonparametric
assumption would imply that the dataset is not generated from a member of a particular parametric
family, it is assumed to be generated from an unknown density (distribution) f (F ). Since the whole
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Figure 14.7 Posterior estimates of fake rates for different bill denominations. vertical lines correspond
to 95% credible intervals and big dots to posterior means. Black (left) lines are obtained with
independent priors and red (right) lines with hierarchical prior.

f is unknown, we can say that the number of parameters to estimate is infinity, all f(y)’s values at
any specific point y.

The way the Bayesian paradigm treats the unknown quantities is to determine a prior distribution
and via Bayes’ Theorem update the prior knowledge with the information given by the data. In
a nonparametric assumption the unknown quantities are the whole f (or F ), so one is required
to place a prior distribution on f . The way we achieve this is by using stochastic processes whose
paths are density (or distribution) functions. This leads to the concept of nonparametric priors or
random probability measures, since once a stochastic process has been chosen for f , any probability
calculated from it, say P(Y ∈ B) =

∫
B f(y)dy is a random variable. According to Ferguson (1973)

a nonparametric prior must have large support in the sense that any fixed probability distribution
can be arbitrarily approximated by a realization from the prior.

14.5.2 Polya tree prior

One of the simplest and most powerful nonparametric priors is the Polya tree (Lavine, 1992). To
start building the picture, let us consider a probability histogram. This is an estimate of a density
function where the sampling space is partitioned in intervals and a bar is placed on top of each
interval whose area represents the probability of lying in that particular interval. Imagine that
the area assigned to each interval is a random variable such that the sum of all areas (random
variables) is constrained to be one (almost surely), then this would be a realization of a (finite)
Polya tree. This behaviour is illustrated in Figure 14.8. The formal definition of a Polya tree has
been postponed to the Appendix 14.6.
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Figure 14.8 Five realizations (black thin lines) of a finite PT with M = 2 levels and centered on a
N(0, 1) density (red thick line), with a = 1.

14.5.3 Semiparametric linear regression

Let us recall the linear regression model of Section 14.3, where the conditional distribution of the
response variable yi given a set of explanatory variables xi is given by yi|xi ∼ N(x′iβ, τ). If we
consider the linear equation with an additive error εi ∼ N(0, τ), the same model is re-expressed
as yi = x′iβ + εi. This linear parametric model can be converted in a semiparametric model by
relaxing the distribution fε of the errors εi to be nonparametric, for instance, a Polya tree. The
normal model can be our prior mean and we can control how uncertain we are about the normal
distribution of the errors by controlling the precision parameter a. For a → ∞ we go back to the
parametric normal regression model as a limiting case.

The semiparametric regression model is then defined as

yi = x′iβ + εi, εi | fε ∼ fε, fε ∼ PT (Π,A), (14.4)

with f0 = N(0, τ) and αmj = am2 and a > 0. A further adjustment needs to be done. Since
E(fε) = f0 this implies that εi ∼ N(0, τ) marginally (on average). That is, not always E(εi) = 0, only
on average. We can force the Polya tree to be centered at zero always (with probability 1) by fixing
the first partition of the tree to be B11 = (−∞, 0] and B12 = (0,∞), and taking θ11 = θ12 = 1/2
with probability 1. This implies that the median of the random density fε of each εi is zero. This is
verified by noting that the median of εi is zero iff P(εi ≤ 0) = P(εi ∈ B11) = θ11 = 1/2. Therefore,
the semiparametric regression model (14.4) is not a mean regression model but a median regression
model since x′iβ becomes the median of the response variable yi.

Model (14.4) has two unknown quantities β and fε. Our prior knowledge on fε has been placed
through the Polya tree, so we also require a prior distribution for β. The common assumption is to
take βj ∼ N(b0, t0), independently for j = 1, . . . , p, as in most (generalized) regression models. The
likelihood function for this semiparametric model is a function of the prior parameters θ and β as
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Table 14.10 R code for model of Example 14.5.
# Initial state

state<-NULL

# MCMC parameters

nburn<-500; nsave<-5000; nskip<-2; ndisplay<-500

mcmc<-list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay)

# Prior information

prior<-list(alpha=1,beta0=rep(0,14),Sbeta0=diag(1000,14),tau1=0.01,tau2=0.01,M=6)

# Fit the model

fit<-PTlm(formula=log(y)∼z2+z3+z4+z5+z6+z7+log(x)+z2*log(x)+z3*log(x)+z4*log(x)
+z5*log(x)+z6*log(x)+z7*log(x),prior=prior,mcmc=mcmc,state=state,status=TRUE)

# Summary with HPD and Credibility intervals

summary(fit)

follows:

lik(β,θ | y,x) =
n∏

i=1

f(yi|xi) =
n∏

i=1

fε(yi − x′iβ) =
n∏

i=1

∏
m

θm,jεi
,

with εi = yi − x′iβ. Posterior distributions for (β, fε) will be characterized conditionally. fε|β,y
is another Polya tree with the distribution of the parameters θ updates with εi’s as observations.
β|fε,y is just proportional to the product of the likelihood and the prior and Metropolis-Hastings
steps will be required for sampling from it. More details on this semiparametric model can be found
in Walker and Mallick (1999). Fortunately, posterior inference with this semiparametric model is
implemented in the function PTlm from the R library DPpackage.

Example 14.5. Consider the insurance dataset described in Example 14.1. This dataset consisted
of claim amounts yi, premiums written xi and class indicators zji, for j = 1, . . . , 7 sectors and
i = 1, . . . , 228 observations. In Example 14.1 a linear model in the logarithmic scale was suggested
to describe severity amounts in terms of the premiums written by sector. Let us consider the
same linear predictor, but instead of assuming normality of the errors (responses) we will consider
nonparametric errors with a Polya tree prior. The new model becomes yi = α1 +

∑7
j=2 αjzji +

β1 log(xi) +
∑7

j=2 βj log(xj) ∗ zji + εi, with εi|fε ∼ fε and fε ∼ PT (Π,A).
The Polya tree is centered on f0 = N(0, τ), as in the parametric model, with αmj = am2. We

took a = 1 and assigned a prior to the error precision τ ∼ Ga(0.01, 0.01). It is worth mentioning
that this latter prior induces a different specification of the Polya tree partitions Π = {Bmj} for
every value of τ , producing a mixing over the partitions and thus implying smoothed paths of the
tree. We specify a finite tree with a number of partition levels M = 6. For the model coefficients
we used the same priors as in Example 14.1, that is, αj ∼ N(0, 0.001) and βj ∼ N(0, 0.001), for
j = 1, . . . , 7. The specifications for implementing this model in R with the use of the DPpackage
library are presented in Table 14.10.

Remember that the semiparametric regression model just defined is a median regression model
with an enhanced flexibility in the specification of the errors. Posterior estimates of model coef-
ficients are included in the last two columns of Table 14.2. The point estimates of all coefficients
are numerically different from those obtained with the parametric model, but only few of them
are statistically different. Estimates of β1 and β7 present intervals that do not intercept between
the parametric and the nonparametric scenarios, so implying a difference in the slope relationships
between log(yi) and log(xi) for insurance sectors ACC and HEA comparing parametric and non-
parametric fit. Figure 14.9 compares the paramertric and the nonparametric fittings for the seven
sectors in different panels. The major differences among the two fittings are in the first two sectors
ACC and AGR. In both cases there is presence of an extreme observation that pulls the parametric
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fit, whereas the nonparametric model is less sensitive to extreme observations producing a more
realistic fit consistent with non-extreme observations.
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Figure 14.9 Dispersion diagrams of severity amounts yi versus premiums written xi by insurance
class j = 1, . . . , 7. Solid line (parametric fitting) and dotted line (nonparametric fitting).

14.6 Appendix

To formally define a Polya tree prior let Π = {Bmj} be a set of binary nested partitions of IR such
that at level m = 1, 2, . . . we have a partition of IR with 2m elements and the index j, j = 1, . . . , 2m,
identifies the element of the partition at level m. For example, at level one (m = 1), we have a
partition of 21 elements B11 and B12. At level two (m = 2) we have a partition of 22 = 4 elements
B21, B22, B23 and B24 such that (B21, B22) are a partition of B11 and (B23, B24) are a partition
of B12. In general, at level m, Bmj is partitioned into (Bm+1,2j−1, Bm+1,2j) at level m + 1 with
Bm+1,2j−1 ∩ Bm+1,2j = ∅. Figure 14.10 presents a diagram of these nested partitions for levels
m = 1, 2, 3.

Let θ = {θmj} be a set of parameters such that each θmj is associated to the set Bmj . The
parameter θmj determines the conditional probability of a random variable Y being in the set Bmj

given that it belonges to the father, Bm,(j+1)/2 if j is odd, or Bm,j/2 if j is even. For example,
θ21 = P(Y ∈ B21|Y ∈ B11). Since the two subsets of a father set form a partition of the set, the
conditional probabilities must sum to one. In the example, θ21 + θ22 = 1, where θ22 = P(Y ∈
B22|Y ∈ B11). In general θm,2j = 1 − θm,2j−1 for j = 1, . . . , 2m−1. Therefore, for the sets at level
m, the probability of Y belonging to the set Bmj is just the product of all conditional probabilities
θmj , one for each level, where the set Bmj belong to. In notation,

P(Y ∈ Bmj) =
m∏

k=1

θm−k+1,r(m−k+1),

where r(k − 1) = d(r(k)/2)eis a recursive decreasing formula whose initial value is r(m) = j and
locates the set Bmj with its ancestors upwards in the tree. d·e denotes the ceiling function. For
example, P(Y ∈ B21) = θ21θ11. If we continue the partitions down to infinity, we can define the
density f(y|θ) foe every y ∈ IR in terms of the parameters θ.

The Polya tree is then defined as the prior distribution for the density f(y|θ). Since θ is an
infinite set, then f(y|θ) is nonparametric (or infinitely parametric). Because θmj are (conditional)
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Figure 14.10 Diagram of nested partitions of IR for three levels.

probabilities, they must be in the interval (0, 1), so a natural prior is a beta distribution. Therefore
θmj ∼ Be(αm,j , αm,j+1). If we denote by A = {αmj} the set of all α parameters, then we can denote
by PT (Π,A) a Polya tree prior for the density f(y) or for the probability measure P(·).

The Polya tree prior is defined in terms of the partitions Π and nonnegative parameters A. These
two sets must reflect our prior knowledge about the unknown density f(·). If we know that the
true f(·) should be around a f0(·) density, e.g. a N(0, 1) density, we can make the prior to satisfy
E(f) = f0 in the following way (e.g. Hanson and Johnson, 2002): Take the partition elements Bmj

to correspond to the dyadic quantiles of f0, i.e.,

Bmj =
(
F−1

0

(
j − 1
2m

)
, F−1

0

(
j

2m

)]
, (14.5)

for j = 1, . . . , 2m, with F−1
0 (0) = −∞ and F−1

0 (1) = ∞ and F0 the distribution function corre-
sponding to density f0; and take αmj = am2 (constant within each level m) such that θm,2j−1 ∼
Be(am2, am2) independently for j = 1, . . . , 2m−1. This particular choice of the αmj parameters
defines an almost surely continuous prior (Ferguson, 1974). The parameter a plays the role of a
precision parameter, larger values of a make the prior to concentrate closer to the mean f0, whereas
smaller values make the prior to be “more nonparametric” since the prior will place larger variance
around the mean f0.

To better understand the Polya tree, Figure 14.8 presents five realizations of a finite Polya tree
prior with a total of M = 2 levels, producing 4 elements partitioning the real line. These subsets
were defined using the quartiles of a N(0, 1) density as in (14.5). Since we stop partitioning at a
finite level M , the density of the points inside the sets BMj needs to be spread, either uniformly
(forming a histogram), or according to f0, as in Figure 14.8 with f0 = N(0, 1). This is achieved by
defining f(y | θ) = 2Mf0(y)

∏M
m=1 θm,jy , where the pair (m, jy) identifies the set B at level m that

contains the point y. Each realization of a (finite) Polya tree corresponds to a “histogram” which
results from a random perturbation of the centering density f0 in the sets at level M , BMj .

Apart form the intuitive definition of a Polya tree, it has the advantage that its posterior represen-
tation is conjugate, following another Polya tree with updated parametersA. For a sample y1, . . . , yn
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of size n such that yi|f ∼ f and f ∼ PT (Π,A) then f | y ∼ PT (Π,A∗) with α∗mj = αmj + nmj

where nmj =
∑n

i=1 I(yi ∈ Bmj) is the number of observations yi’s that fall in the set Bmj .
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