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2.8 Exercises

2.1

2.2

and
d
(D) = —F(D).
q:(D) .7 (D)

Knowledge of the function p(#) and the observable information,
(7, 0), is sufficient to determine uniquely the marginal distribution
of X. The resulting estimators §p(x) are decreasing functions of p(+).
These resulting bounds are obtained by the investigator’s specifica-
tion of two functions, p,(Dlp; (1) < p(D], so that if the true p(#)
function is in the interval [p;() < p,(D), for all ¢z, then Sp,(t) =

S(H = Spi(D).

2. Pepe (1991) and Pepe and Mori (1993) interpret the cumulative in-

cidence function as a “marginal probability.” Note that this function
is not a true marginal distribution as discussed earlier but rather is
the chance that the event of interest will occur prior to time # in a
system where an individual is exposed to both risks. Pepe and Mori
suggest as an alternative to the cumulative incidence function the
“conditional probability” of X, defined by

E(

PAX =X < V)Y <X > v = 20

which they interpret as the probability of X’s occurring in [0, #), given
nonoccurrence of Y in [0, 1), where F¢ denotes the complement of F.

The lifetime of light bulbs follows an exponential distribution with a
hazard rate of 0.001 failures per hour of use.

(a) Find the mean lifetime of a randomly selected light bulb.

(b) Find the median lifetime of a randomly selected light bulb.

(c) What is the probability a light bulb will still function after 2,000
hours of use?

The time in days to development of a tumor for rats exposed to a
carcinogen follows a Weibull distribution with @« = 2 and A = 0.001.

(a) What is the probability a rat will be tumor free at 30 days? 45 days?
60 days?

(b) What is the mean time to tumor? (Hint I'(0.5) = ﬁ.)

(o) Find the hazard rate of the time to tumor appearance at 30 days, 45
days, and 60 days.

(d) Find the median time to tumor.
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2.3

2.4

2.5

2.6

2.7

2.8

The time to death (in days) following a kidney transplant follows a log
logistic distribution with @ = 1.5 and A = 0.01.

(a) Find the 50, 100, and 150 day survival probabilities for kidney trans-
plantation in patients.

(b) Find the median time to death following a kidney transplant.

(¢) Show that the hazard rate is initially increasing and, then, decreas-
ing over time. Find the time at which the hazard rate changes from
increasing to decreasing.

(d) Find the mean time to death.

A model for lifetimes, with a bathtub-shaped hazard rate, is the ex-
ponential power distribution with survival function S(x) = exp{l —
expl(Ax)*]}.

(@) If & = 0.5, show that the hazard rate has a bathtub shape and find
the time at which the hazard rate changes from decreasing to increasing.

(b) If @« = 2, show that the hazard rate of x is monotone increasing.
The time to death (in days) after an autologous bone marrow transplant,
follows a log normal distribution with w = 3.177 and o = 2.084. Find
(a) the mean and median times to death;

(b) the probability an individual survives 100, 200, and 300 days fol-
lowing a transplant; and

(c) plot the hazard rate of the time to death and interpret the shape of
this function.

The Gompertz distribution is commonly used by biologists who believe
that an exponential hazard rate should occur in nature. Suppose that
the time to death in months for a mouse exposed to a high dose of
radiation follows a Gompertz distribution with # = 0.01 and a = 0.25.
Find

(a) the probability that a randomly chosen mouse will live at least one
year,

(b) the probability that a randomly chosen mouse will die within the
first six months, and

(¢) the median time to death.

The time to death, in months, for a species of rats follows a gamma
distribution with B = 3 and A = 0.2. Find

(a) the probability that a rat will survive beyond age 18 months,
(b) the probability that a rat will die in its first year of life, and

() the mean lifetime for this species of rats.

The battery life of an internal pacemaker, in years, follows a Pareto
distribution with § = 4 and A = 5.
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2.9

2.10

2.11

(a) What is the probability the battery will survive for at least 10 years?
(b) What is the mean time to battery failure?

(o) If the battery is scheduled to be replaced at the time #,, at which 99%
of all batteries have yet to fail (that is, at #, so that Pr(X > t,) = 99),
find ¢,.

The time to relapse, in months, for patients on two treatments for lung
cancer is compared using the following log normal regression model:

Y =1Ln(X) =2+ 052+ 2W,

where W has a standard normal distribution and Z = 1 if treatment A
and 0 if treatment B.

(a) Compare the survival probabilities of the two treatments at 1, 2, and
5 years.

(b) Repeat the calculations if W has a standard logistic distribution.
Compare your results with part (a).

A model used in the construction of life tables is a piecewise, con-
stant hazard rate model. Here the time axis is divided into k& intervals,
[T,-1,7), 1 =1,..., k, with 7, = 0 and 7, = . The hazard rate on the
ith interval is a constant value, 6;; that is

0, 0=x<m

0, nT=x<m
h(x) =

Op-1 Te2=x<Tp

Ok X = Th—1

(a) Find the survival function for this model.

(b) Find the mean residual-life function.

(¢) Find the median residual-life function.

In some applications, a third parameter, called a guarantee time, is
included in the models discussed in this chapter. This parameter ¢ is
the smallest time at which a failure could occur. The survival function
of the three-parameter Weibull distribution is given by

1 if x <o
S = {exp[—/\(x — )l if x = o.

(a) Find the hazard rate and the density function of the three- parameter
Weibull distribution.
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2.12

2.13

2.14

2.15

2.16

(b) Suppose that the survival time X follows a three-parameter Weibull
distribution with &« = 1, A = 0.0075 and ¢ = 100. Find the mean and
median lifetimes.

Let X have a uniform distribution on the interval 0 to 6 with density
function

1/6, for0=x=0

0, otherwise.

fx) =

(a) Find the survival function of X.
(b) Find the hazard rate of X.
(¢) Find the mean residual-life function.

Suppose that X has a geometric distribution with probability mass func-
tion

plo) =pd—ptx=12...
(a) Find the survival function of X. (Hint: Recall that for 0 < 6 < 1,
St = 0% /(1 — 0).

(b) Find the hazard rate of X. Compare this rate to the hazard rate of
an exponential distribution.

Suppose that a given individual in a population has a survival time
which is exponential with a hazard rate 6. Each individual’s hazard rate
0 is potentially different and is sampled from a gamma distribution with
density function

/\ﬁ 0[3—1 e—w
I'®

Let X be the life length of a randomly chosen member of this popula-
tion.

O

(a) Find the survival function of X.
(Hint: Find S(x) = Eyle *1.)
(b) Find the hazard rate of X. What is the shape of the hazard rate?

Suppose that the hazard rate of X is a linear function A(x) = « + Bx,
with a and B > 0. Find the survival function and density function of x.

Given a covariate Z, suppose that the log survival time Y follows a
linear model with a logistic error distribution, that is,

Y =In(X) = un + BZ + oW where the pdf of W is given by

e
f(w)—m,—oo<w<00.
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2.17

2.18

2.19

2.20

(a) For an individual with covariate Z, find the conditional survival
function of the survival time X, given Z, namely, S(x | 2).

(b) The odds that an individual will die prior to time x is expressed by
[1— S(x | 21/S(x | Z). Compute the odds of death prior to time x for
this model.

(¢) Consider two individuals with different covariate values. Show that,
for any time x, the ratio of their odds of death is independent of x. The
log logistic regression model is the only model with this property.

Suppose that the mean residual life of a continuous survival time X is
given by MRL(x) = x + 10.

() Find the mean of X.

(b) Find h(x).

() Find S(x).

Let X have a uniform distribution on 0 to 100 days with probability
density function

f(x) = 1/100 for 0 < x < 100,
= 0, elsewhere.

(a) Find the survival function at 25, 50, and 75 days.
(b) Find the mean residual lifetime at 25, 50, and 75 days.
(¢) Find the median residual lifetime at 25, 50, and 75 days.

Suppose that the joint survival function of the latent failure times for
two competing risks, X and Y, is

S, =0—-200— A+ 5x)), 0<x<1, 0<ypy<I1.

(a) Find the marginal survival function for x.
(b) Find the cumulative incidence of 73.

Let X and Y be two competing risks with joint survival function
S(x, ) = exp{—x —y— 5xp},0 < x, ).

(a) Find the marginal cumulative distribution function of X.
(b) Find the cumulative incidence function of X.
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3.7 Exercises

3.1

3.2

For right-censored data, where A, (1) = Y(Dh(1), with Y;(1) = 1 if
t=1,0if t > 1, so

e [T o~ 1)),
J=

=1

which is exactly the same form as (3.5.1). This heuristic argument is
precisely stated in Chapter 2 of Andersen et al. (1993).

The counting process techniques illustrated in this section can be
used to derive a wide variety of statistical techniques for censored
and truncated survival data. They are particularly useful in developing
nonparametric statistical methods. In particular, they are the basis of
the univariate estimators of the survival function and hazard rate dis-
cussed in Chapter 4, the smoothed estimator of the hazard rate and
the models for excess and relative mortality discussed in Chapter 0,
most of the k-sample nonparametric tests discussed in Chapter 7, and
the regression methods discussed in Chapters 8, 9, and 10. A check of
the martingale property is used to test model assumptions for regres-
sion models, as discussed in Chapter 11. Most of the statistics devel-
oped in the sequel can be shown to be stochastic integrals of some
martingale, so large sample properties of the statistics can be found
by using the predictable variation process and the martingale central
limit theorem. In the theoretical notes, we shall point out where these
methods can be used and provide references to the theoretical de-
velopment of the methods. The books by Andersen et al. (1993) or
Fleming and Harrington (1991) provide a sound reference for these
methods.

Describe, in detail, the types of censoring which are present in the
following studies.

(a) The example dealing with remission duration in a clinical trial for
acute leukemia described in section 1.2.

(b) The example studying the time to death for breast cancer patients
described in section 1.5.

A large number of disease-free individuals were enrolled in a study
beginning January 1, 1970, and were followed for 30 years to assess
the age at which they developed breast cancer. Individuals had clinical
exams every 3 years after enrollment. For four selected individuals
described below, discuss in detail, the types of censoring and truncation
that are represented.
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3.3

3.4

(a) A healthy individual, enrolled in the study at age 30, never devel-
oped breast cancer during the study.

(b) A healthy individual, enrolled in the study at age 40, was diagnosed
with breast cancer at the fifth exam after enrollment (i.e., the disease
started sometime between 12 and 15 years after enrollment).

(¢) A healthy individual, enrolled in the study at age 50, died from a
cause unrelated to the disease (i.e., not diagnosed with breast cancer
at any time during the study) at age 61.

(d) An individual, enrolled in the study at age 42, moved away from
the community at age 55 and was never diagnosed with breast cancer
during the period of observation.

(e) Confining your attention to the four individuals described above,
write down the likelihood for this portion of the study.

An investigator, performing an animal study designed to evaluate the
effects of vegetable and vegetable-fiber diets on mammary carcinogen-
esis risk, randomly assigned female Sprague-Dawley rats to five dietary
groups (control diet, control diet plus vegetable mixture, 1; control diet
plus vegetable mixture, 2; control diet plus vegetable-fiber mixture, 1,
and control diet plus vegetable-fiber mixture, 2). Mammary tumors were
induced by a single oral dose (5 mg dissolved in 1.0 ml. corn oil) of
7,12-dimethylbenz(a)anthracene (DMBA) administered by intragastric
intubation, i.e., the starting point for this study is when DMBA was
given.

Starting 6 weeks after DMBA administration, each rat was examined
once weekly for 14 weeks (post DMBA administration) and the time
(in days) until onset of the first palpable tumor was recorded. We wish
to make an inference about the marginal distribution of the time until
a tumor is detected. Describe, in detail, the types of censoring that are
represented by the following rats.

(a) A rat who had a palpable tumor at the first examination at 6 weeks
after intubation with DMBA.

(b) A rat that survived the study without having any tumors.

(c¢) A rat which did not have a tumor at week 12 but which had a tumor
at week 13 after inturbation with DMBA.

(d) A rat which died (without tumor present and death was unrelated
to the occurrence of cancer) at day 37 after intubation with DMBA.

(e) Confining our attention to the four rats described above, write down
the likelihood for this portion of the study.

In section 1.2, a clinical trial for acute leukemia is discussed. In this
trial, the event of interest is the time from treatment to leukemia re-
lapse. Using the data for the 6-MP group and assuming that the time to
relapse distribution is exponential with hazard rate A, construct the like-
lihood function. Using this likelihood function, find the maximum likeli-
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3.5

3.6

3.7

hood estimator of A by finding the value of A which maximizes this
likelihood.

Suppose that the time to death has a log logistic distribution with param-
eters A and «. Based on the following left-censored sample, construct
the likelihood function.

DATA: 0.5, 1, 0.75, 0.25-, 1.25-, where - denotes a left- censored
observation.

The following data consists of the times to relapse and the times to
death following relapse of 10 bone marrow transplant patients. In the
sample patients 4 and 6 were alive in relapse at the end of the study
and patients 7-10 were alive, free of relapse at the end of the study.
Suppose the time to relapse had an exponential distribution with hazard
rate A and the time to death in relapse had a Weibull distribution with
parameters 6 and .

Patient Relapse Time Death Time
(months) (months)

1 5 11
2 8 12
3 12 15
4 24 33"
5 32 45
6 17 28*
7 16* 16*
8 17* 17+
9 19" 19*

10 30* 30*

* Censored observation

(a) Construct the likelihood for the relapse rate A.
(b) Construct a likelihood for the parameters 6 and «.

(o) Suppose we were only allowed to observe a patients death time if
the patient relapsed. Construct the likelihood for 6 and a based on this
truncated sample, and compare it to the results in (b).

To estimate the distribution of the ages at which postmenopausal
woman develop breast cancer, a sample of eight 50-year-old women
were given yearly mammograms for a period of 10 years. At each exam,
the presence or absence of a tumor was recorded. In the study, no
tumors were detected by the women by self-examination between the
scheduled yearly exams, so all that is known about the onset time of
breast cancer is that it occurs between examinations. For four of the
eight women, breast cancer was not detected during the 10 year study
period. The age at onset of breast cancer for the eight subjects was in
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3.8

3.9

the following intervals:
(55,501, (58,591, (52, 53], (59, 601, = 60, = 60, = 60, = 60.

(a) What type of censoring or truncation is represented in this sample?

(b) Assuming that the age at which breast cancer develops follows a
Weibull distribution with parameters A and «, construct the likelihood
function.

Suppose that the time to death X has an exponential distribution with
hazard rate A and that the right-censoring time C is exponential with
hazard rate 0. Let 7 = min(X,C) and 6 = 1if X = ¢;0,if X > C.
Assume that X and C are independent.

(@) Find P(6 = D

(b) Find the distribution of 7.

(¢) Show that 6 and T are independent.

(d) Let(1ny,éy),...,(T,,5,) be a random sample from this model. Show
that the maximum likelihood estimator of A is Y.°,8,/> ", T;. Use
parts a—c to find the mean and variance of A.

An example of a counting process is a Poisson process N(#) with rate
A. Such a process is defined by the following three properties:

(a) N(0) = 0 with probability 1.

(b) N(H) — N(s) has a Poisson distribution with parameter A(¢ — ) for
any 0 = s =1

(¢) N(p) has independent increments, that is, for 0 =, < , < t; < 1,
N(t,) — N(1) is independent of N(#) — N(#).

Let Fy be the o-algebra defined by N(s). Define the process M(1) =
N() — At.

i. Show that E|M ()| < .

ii. Show that E[M (1) | N(s)] = M(s) for s < t, and conclude that M ()

is a martingale and that At is the compensator of N(#). (Hint: Write
M = M) — M(s) + M(s).)
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Practical Note

4.8 Exercises

4.1

exp{— [, Ax(w) du}. This quantity has no interpretation as a proba-
bility.

2. The cumulative incidence estimator was first proposed by Kalbfleisch
and Prentice (1980). The estimator can be derived using techniques
described in Andersen et al. (1993) as a special case of a more
general theory for product-limit estimators for the transitions of a
non-homogeneous Markov process.

3. Pepe and Mori (1993), Pepe et al. (1993), and Gooley et al. (1999)
provide a nice discussion of these three estimates and present alter-
native derivations of the variance estimates.

1. A SAS macro to compute the cumulative incidence curves can be
found on our web site.

In section 1.11 we discussed a study of the effect of ploidy on the sur-
vival of patients with cancer of the tongue. Using the data on aneuploid
tumors found in Table 1.6.

(a) Estimate the survival function at one (12 months) and five years (60
months) after transplant. Find the standard errors for your estimates.
(b) Estimate the cumulative hazard rate, H(¢), at 60 months. Find the

standard error of H(#). Estimate S(60) by exp{—H(#)} and compare to
your estimate in part a.

(¢) Find a 95% linear confidence interval for S(60).
(d) Find a 95% log-transformed confidence interval for S(60).
(e) Find a 95% arcsine-square root confidence interval for S(60).

(f) Using the log transformation find a 95% EP confidence band for
the survival function over the range three years to six years (i.e., 36—72
months).

(g) Using the log transformation find a 95% Hall-Wellner confidence
band for the survival function over the range three years to six years
(i.e., 36-72 months).

(h) Estimate the mean survival time restricted to 400 months. Also pro-
vide a 95% confidence interval for the restricted mean survival time.

(i) Estimate the median time to death and find a 95% confidence interval
for the median survival time based on a linear confidence interval.
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4.2

4.3

Using the data reported in section 1.3, find the quantities specified
below for the AML low risk and AML high risk groups. Note that most
of these quantities are worked out in detail in Example 4.2 and its
continuations for the ALL group.

(a) Estimate the survival functions and their standard errors for the AML
low risk and AML high risk groups.

(b) Estimate the cumulative hazard rates and their standard errors for
the AML low risk and AML high risk groups.

(¢) Provide a crude estimate of the hazard rates for each group based
on the estimates obtained in (b).

(d) Estimate the mean time to death and find 95% confidence intervals
for the mean survival time for both the AML low risk and AML high risk
groups. (Answers are given in section 4.5.)

(e) Work out estimates of the median time to death and find 95% con-
fidence intervals for the median survival time for both the AML low risk
and AML high risk groups using the linear, log-transformed, and arcsine
formulas. (Answers are given in section 4.5.)

(f) Find 95% confidence intervals for the survival functions at 300 days
post-transplant for both the AML low risk and AML high risk groups
using the log- and arcsine-transformed formulas.

(g) Find 95% EP confidence bands for the survival functions over the
range 100—400 days post-transplant for both the AML low risk and
AML high risk groups using the linear, log-transformed, and arcsine-
transformed formulas.

(h) Find 95% HW confidence bands for the survival functions over
the range 100-400 days post-transplant for both the AML low risk and
AML high risk groups using the linear, log-transformed, and arcsine-
transformed formulas.

(i) Based on the results above and those discussed in Example 4.2 and
its continuations, how do the survival experiences of the ALL, AML low
risk, and AML high risk groups compare?

The following table contains data on the survival times of 25 patients
with inoperative lung cancer entered on a study between November 1,
1979, and December 23, 1979. Complete follow-up was obtained on all
patients so that the exact date of death was known. The study had one
interim analysis conducted on March 31, 1980, by which time only 13
patients had died.

(a) Estimate the survival function based on the available sample in-
formation at the time of the interim analysis on 3/31/80. Provide the
standard error of your estimate.

(b) Use the Brown, Hollandar, and Kowar technique (Practical Note
2 of section 4.1) to complete the right-hand tail of the product-limit
estimate found in part a.
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4.4

Date of Days to
Patient Diagnosis Date of Death Days to death 3/31/80(Status)
1 1/11/79 5/30/79 139 139(Dead)
2 1/23/79 1/21/80 363 363(Dead)
3 2/15/79 8/27/79 193 193(Dead)
4 3/7/79 11/10/79 248 248(Dead)
5 3/12/79 4/8/79 27 27(Dead)
6 3/25/79 10/21/79 210 210(Dead)
7 4/4/79 8/16/79 134 134(Dead)
8 4/30/79 11/19/79 203 203(Dead)
9 5/16/79 5/9/81 724 320 (Alive)
10 5/26/79 7/15/79 50 50(Dead)
11 5/30/79 10/22/80 511 306(Alive)
12 6/3/79 6/25/79 22 22(Dead)
13 6/15/79 12/27/80 561 290(Alive)
14 6/29/79 1/29/81 580 276(Alive)
15 7/1/79 11/14/79 136 136(Dead)
16 8/13/79 6/16/80 308 231(Alive)
17 8/27/79 4/7/80 224 217(Alive)
18 9/15/79 1/9/81 482 198(Alive)
19 9/27/79 4/5/80 191 186(Alive)
20 10/11/79 3/3/80 144 144(Dead)
21 11/17/79 1/24/80 68 68(Dead)
22 11/21/79 10/4/81 083 131(Alive)
23 12/1/79 8/13/80 256 121(Alive)
24 12/14/79 2/27/81 441 108(Alive)
25 12/23/79 4/2/80 101 99(Alive)

(¢) Compute the estimate of the survival function and an estimate of its
standard error using the complete follow-up on each patient. Compare
this estimate to that found in part a.

(d) Estimate the mean time to death restricted to 683 days based on
the product-limit estimator found in part c.

(e) Estimate the mean time to death by finding the area under the
survival curve found in part c. Find the standard error of your estimate.

(f) Compute the usual estimate of the time to death based on complete
follow-up data by finding the arithmetic mean of the complete follow-
up data. Find the standard error of this estimate in the usual way as
the sample standard deviation divided by the square root of the sample
size. Compare your answers to those obtained in part e.

In section 1.4 the times to first exit site infection (in months) of patients
with renal insufficiency was reported. In the study 43 patients had a
surgically placed catheter (Group 1) and 76 patients had a percutaneous
placement of their catheter (Group 0).
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4.5

4.6

(a) For each group plot the estimated survival function. Which tech-
nique seems better in delaying the time to infection?

(b) Estimate the cumulative hazard rate for each group of patients.
Provide a crude estimate of the hazard rate at 5 months after placement
of the catheter in each group.

(o) Find a 95% confidence interval for the mean time to first exit site
infection restricted to 36 months for both groups.

Using the survival times of 59 black females given a kidney transplant
at the OSU transplant center discussed in section 1.7—

(a) Estimate the distribution of the time to death, measured from trans-
plant, for black female kidney transplant patients. Provide the standard
error of the estimated survival function.

(b) Find a 95% confidence interval, based on the linear transformation,
for the probability a black female will survive at least 12 months (365
days) after transplantation.

(¢) Repeat b using the log-transformed confidence interval.

(d) Repeat c¢ using the arcsine-transtormed confidence interval. Com-
pare the intervals found in parts c—e.

In section 1.6 a study is described to evaluate a protocol change in
disinfectant practice in a large midwestern university medical center.
Control of infection is the primary concern for the 155 patients entered
into the burn unit with varying degrees of burns. The outcome vari-
able is the time until infection from admission to the unit. Censoring
variables are discharge from the hospital without an infection or death
without an infection. Eighty-four patients were in the group which had
chlorhexidine as the disinfectant and 72 patients received the routine
disinfectant povidone-iodine.

(a) Estimate the survival (infection-free) functions and their standard
errors for the chlorhexidine and povidone-iodine groups.

(b) Estimate the cumulative hazard rates and their standard errors for
the chlorhexidine and povidone-iodine groups. Plot these estimates.
Does it appear that the two cumulative hazard rates are proportional to
each other?

(0) Provide estimates of the median time to infection and find 95% con-
fidence intervals for the median time to infection for both the chlorhexi-
dine and povidone-iodine groups using the linear, log-transformed, and
arcsine formulas.

(d) Find 95% confidence intervals for the survival (infection-free)
functions at 10 days postadmission for both the chlorhexidine and
povidone-iodine groups using the log transformed and arcsine trans-
formed formulas.

(e) Find 95% confidence bands for the infection-free functions over the
range 8-20 days postinfection for both the chlorhexidine and povidone-
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4.7

4.8

iodine groups using the linear, log transformed, and arcsine transformed
formulas.

(f) Find 95% HW confidence bands for the infection-free functions
over the range 8-20 days postinfection for both the chlorhexidine and
povidone-iodine.

(g) Based on the results above, how does the infection experience of
the chlorhexidine and povidone-iodine groups compare?

Consider a hypothetical study of the mortality experience of diabetics.
Thirty diabetic subjects are recruited at a clinic and followed until death
or the end of the study. The subject’s age at entry into the study and
their age at the end of study or death are given in the table below. Of
interest is estimating the survival curve for a 60- or for a 70-year-old
diabetic.

(a) Since the diabetics needed to survive long enough from birth until
the study began, the data is left truncated. Construct a table showing
the number of subjects at risk, Y, as a function of age.

(b) Estimate the conditional survival function for the age of death of a
diabetic patient who has survived to age 60.

(¢) Estimate the conditional survival function for the age of death of a
diabetic patient who has survived to age 70.

(d) Suppose an investigator incorrectly ignored the left truncation and
simply treated the data as right censored. Repeat parts a—c.

Entry Exit Death Entry Exit Death
Age Age Indicator Age Age Indicator
58 60 1 67 70 1
58 63 1 67 77 1
59 69 0 67 69 1
60 62 1 68 72 1
60 65 1 69 79 0
61 72 0 69 72 1
61 69 0 69 70 1
62 73 0 70 76 0
62 66 1 70 71 1
62 65 1 70 78 0
63 68 1 71 79 0
63 74 0 72 76 1
64 71 1 72 73 1
66 68 1 73 80 0
66 69 1 73 74 1

Table 1.7 reports the results of a study on the survival times of patients
admitted to a psychiatric hospital. In this data set patients were admitted
to the hospital at a random age and followed until death or the end of
the study. Let X be the patient’s age at death. Note that the data we
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4.9

4.10

have on X is left truncated by the patient’s age at entry into the hospital
and right censored by the end of the study.

(a) Plot the number at risk, ¥;, as a function of age.

(b) Estimate the conditional survival function for a psychiatric patient
who has survived to age 30 without entering a psychiatric hospital.

Hoel and Walburg (1972) report results of an experiment to study the
effects of radiation on life lengths of mice. Mice were given a dose of
300 rads of radiation at 5-6 weeks of age and followed to death. At
death each mouse was necropsied to determine if the cause of death
was thymic lymphoma, reticulum cell sarcoma, or another cause. The
ages of the mice at death are shown below:

Cause Age at Death
of Death (Days)
Thymic 158, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244,
lymphoma 247, 259, 300, 301, 337, 415, 444, 485, 496, 529, 537, 624, 707, 800

Reticulum cell 430, 590, 606, 638, 655, 679, 691, 693, 696, 747, 752, 760, 778,
sarcoma 821, 986

Other causes 136, 246, 255, 376, 421, 565, 616, 617, 652, 655, 658, 660, 662,
675, 681, 734, 736, 737, 757, 769, 777, 801, 807, 825, 855, 857,
864, 868, 870, 873, 882, 895, 910, 934, 942, 1,015, 1,019

(a) For each of the three competing risks estimate the cumulative inci-
dence function at 200, 300, ..., 1,000 days by considering the two other
risks as a single competing risk.

(b) Show that the sum of the three cumulative incidence functions
found in part a is equal to the Kaplan-Meier estimate of the overall
survival function for this set of data.

(¢) Repeat part a using the complement of the marginal Kaplan-Meier
estimates. What are the quantities estimating and how different from
the results found in part a are these estimates?

(d) Compute the conditional probability function for thymic lymphoma
at 500 and 800 days. What are the quantities estimating?

Using the data reported in section 1.3 for the AML low risk and AML
high risk groups, find the following quantities for the two competing
risks of relapse and death:

(a) The estimated cumulative incidence at one year.

(b) The standard errors of the two estimates in part a.

(¢) The estimated conditional probabilities of relapse and of death in
remission.

(d) The standard errors of the probabilities found in part c.

(e) Graphically express the development of relapse and death in re-
mission for these two disease groups.
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parisons (in our case, K = 3) is used to make pairwise comparisons
of the cumulative incidence curves, each test needs to be carried out
at the 0.05/3 = 0.017 level of significance. The contrasts (1, —1,0),
(1,0, —1), and (0,1, —1) may be used to test each of the individual
pairwise comparisons. Using the appropriate variances in (7.8.5), we
get

for Hy: CL(#) = CL(f) at f, = 1

we have
7 = 241, p-value = 0.016,
for H,: CL(#) = CL(%) at t, = 1
we have
Z = —1.17, p-value = 0.242,
and
for Hy: CL(t) = CL(L) at f, = 1
we have

Z = —3.76, p-value = 0.0002.

Thus we conclude that the AML high-risk group is statistically different
from the other two groups and that the ALL and AML low-risk groups
are not statistically different from each other.

1. One may test a hypothesis for any linear combination of several
groups. For example, if one wants to test whether the cumulative inci-
dence curves for the ALL patients are different than those for the AML
(both high-risk and low-risk) patients, then one may select the linear
contrast (2, —1, —1) and use the quadratic form (7.8.5).

In a study of the effectiveness of a combined drug regimen for the
treatment of rheumatoid arthritis, 40 white patients were followed for
a period ranging from 1 to 18 years. During the course of the study, 9
patients died. The ages at entry into the study and at death for these 9
patients were as follows:
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Female deaths: (66, 74), (60, 76), (70, 77), (71, 81)
Male deaths: (50, 59), (60, 66), (51, 69), (69, 71), (58, 71)

For the 31 patients still alive at the end of the study their ages at entry
and last follow-up were as follows:

Female Survivors: (50, 68), (55, 72), (56, 60), (45, 55), (48, 51), (44, 55), (33, 51), (44,
50), (60, 70), (55, 60), (60, 72), (77, 80), (70, 75), (66, 70), (59, 63), (62, 63)

Male Survivors: (53, 68), (55, 62), (56, 63), (45, 51), (48, 61), (49, 55), (43, 51),

(44, 54), (61, 70), (45, 60), (63, 72), (74, 80), (70, 76), (66, 72), (54, 70)

Using the all-cause U.S. mortality table for 1989 (Table 2.1) test the
hypothesis that the death rate of these rheumatoid arthritis patients is
not different from that in the general population using the log-rank test.

In Exercise 5 of Chapter 6, the survival experience of patients given
an autologous transplant was compared to a postulated exponential
survival rate with a hazard rate of 0.045. Using the data in Table 1.4
of Chapter 1, test the hypothesis that the hazard rate of these auto
transplant patients is equal to 0.045 against the alternative that it is
larger than 0.045 using the one-sample, log-rank test. Repeat this test
using a weight function which gives heavier weight to departures early
in time from this hazard rate.

Consider the data reported in section 1.6 on the times until staphylo-
coccus infection of burn patients (see our web page).

(a) Using the log-rank test, test the hypothesis of no difference in
the rate of staphylococcus infection between patients whose burns
were cared for with a routine bathing care method versus those
whose body cleansing was initially performed using 4% chlorhexi-
dine gluconate. Use a two-sided test and a 0.05 significance level.

(b) Repeat the test using Gehan’s test.
(¢) Repeat the test using the Tarone and Ware weights.

In section 1.11, data from a study of the effect of ploidy on survival for
patients with tumors of the tongue was reported.

(a) Test the hypothesis that the survival rates of patients with cancer
of the tongue are the same for patients with aneuploid and diploid
tumors using the log-rank test.

(b) If primary interest is in detecting differences in survival rates be-
tween the two types of cancers which occur soon after the diagnosis
of the cancer, repeat part a using a more appropriate test statistic.

Using the data on laryngeal cancers in Example 7.0, test, by the log-rank
statistic, the null hypothesis of no difference in death rates among the
four stages of cancer against the global alternative that at least one of
the death rates differs from the others. Compare your results to those
found in Example 7.6.
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One of the goals of recent research is to explore the efficacy of
triple-drug combinations of antiretroviral therapy for treatment of HIV-
infected patients. Because of limitations on potency and the continuing
emergence of drug resistance seen with the use of currently available
antiretroviral agents in monotherapy and two-drug regimens, triple-
combination regimens should represent a more promising approach
to maximize antiviral activity, maintain long-term efficacy, and reduce
the incidence of drug resistance. Towards this end, investigators per-
formed a randomized study comparing AZT + zalcitabine (ddC) versus
AZT + zalcitabine (ddC) + saquinavir. The data, time from administra-
tion of treatment (in days) until the CD4 count reached a prespecified
level, is given below for the two groups.

AZT + zalcitabine (ddC): 85, 32, 38+, 45, 4+, 84, 49, 180+, 87, 75, 102, 39, 12, 11, 80,
35,6

AZT + zalcitabine (ddC) + saquinavir: 22, 2, 48, 85, 160, 238, 56+, 94+, 51+, 12, 171,
80, 180, 4, 90, 180+, 3

Use the log rank statistic to test if there is a difference in the distribution
of the times at which patient’s CD4 reaches the prespecified level for
the two treatments.

A study was performed to determine the efficacy of boron neutron
capture therapy (BNCT) in treating the therapeutically refractory FO8
glioma, using boronophenylalanine (BPA) as the capture agent. FO8
glioma cells were implanted into the brains of rats. Three groups of rats
were studied. One group went untreated, another was treated only with
radiation, and the third group received radiation plus an appropriate
concentration of BPA. The data for the three groups lists the death times
(in days) and is given below:

Untreated Radiated Radiated + BPA
20 26 31
21 28 32
23 29 34
24 29 35
24 30 36
26 30 38
26 31 38
27 31 39
28 32 42%
30 35F 42%

*Censored observation

(a) Compare the survival curves for the three groups.
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(b) Perform pairwise tests to determine if there is any difference in
survival between pairs of groups.

(¢) There is a priori evidence that, if there is a difference in survival,
there should be a natural ordering, namely, untreated animals will
have the worst survival, radiated rats will have slightly improved
survival, and the radiated rats + BPA should have the best survival.
Perform the test for trend which would test this ordered hypothesis.

In Example 7.4, we compared the disease-free survival rates of ALL
patients with those of high-risk and low risk AML patients. Because
acute graft-versus-host (aGVHD) disease is considered to have an an-
tileukemic effect, one would expect lower relapse rates for patients who
have developed aGVHD than for those that do not develop aGVHD.
Using the data on out web page, examine the validity of this finding by

(a) testing if the hazard rate for the occurrence of aGVHD is the same
for the three groups,

(b) testing if the hazard rate for relapse is the same in all three groups,
and

(o) testing if the hazard rate for relapse in the three disease groups is
the same for patients who have developed aGVHD. (Hint: For this
test, the data is left-truncated at the time of aGVHD).

On our web page, data is reported on the death times of 863 kidney
transplant patients (see section 1.7). Here, patients can be classified by
race and sex into one of four groups.

(a) Test the hypothesis that there is no difference in survival between
the four groups.

(b) Provide individual tests, for each sex, of the hypothesis of no racial
differences in survival rates. Also, adjusting by stratification for the
sex of the patient, test the hypothesis that blacks have a higher
mortality rate than whites.

In Example 7.6 we found that the four populations of cancer patients
had ordered hazard rates. Of interest is knowing which pairs of the
hazard rates are different. Using the log-rank test, perform the three
pairwise tests of the hypothesis Hy; : b, (1) = b; (1) versus Hy; : b (1) <
b1 (D), for j = 1,2,3. For each test, use only those individuals with
stage jor j+ 1 of the disease. Make an adjustment to your critical value
for multiple testing to give an approximate 0.05 level test.

One method to making the pairwise comparisons is to base the pair-
wise tests on the full Z(7) vector. To perform this test, recall that this
vector has an asymptotic K variate normal distribution with mean 0

and covariance matrix 2 under the null hypothesis. Thus, the statistic
Z{(1) — Z;+1(1) has a normal distribution with mean 0 and variance
0 + 0j41;41 — 26,741 when the null hypothesis is true. Large neg-
ative values of this test statistic will suggest that the hazard rate in
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sample j is smaller than in sample j + 1, so the hypothesis H; :
h(t) = h;1(1) is rejected in favor of Hy; : h() < b;1(t) when
(Z/(T) = Z;1(DV/[6 )5+ 6 4141 — 26 ;;41]Y/% is smaller than the ath lower
percentile of a standard normal. Use the information in Example 7.6
and this statistic to make the multiple comparisons.

The data on laryngeal cancer patients was collected over the period
1970-1978. It is possible that the therapy used to treat laryngeal cancer
may have changed over this nine year period. To adjust for this pos-
sible confounding fact, test the hypothesis of no difference in survival
between patients with different stages of disease against a global alter-
native using a test which stratifies on the cancer being diagnosed prior
to 1975 or not. Also perform a separate test of the hypothesis of interest
in each stratum.

(a) Repeat Exercise 3 using the log-rank version of the Renyi statistic.
(b) Repeat Exercise 4 using the Gehan version of the Renyi statistic.
In Table 1.3 of section 1.5, the data on time to death for breast cancer-
patients who where classed as lymph node negative by standard light
microscopy (SLM) or by immunohistochemical (IH) examination of their
lymph nodes is reported. Test the hypothesis that there is no difference
in survival between theses two groups using

(a) the log-rank test,

(b) the Renyi statistic based on the log-rank test,

(¢) the Cramer-von Mises statistic, and

(d) the weighted difference in the Kaplan—Meier statistic Wi,;.

Repeat Exercise 7 using

(a) the Renyi statistic based on the log-rank test,

(b) the Cramer-von Mises statistic, and

(o) the weighted difference in the Kaplan—Meier statistic Wiy.

Using the data of section 1.3,

(a) compare the three survival functions for ALL, AML low-risk, and
AML high-risk at one year;

(b) perform pairwise multiple comparisons for the three groups em-
ploying the Bonferroni correction for multiple tests.
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8.2

5.

As was the case for confidence intervals for the survival function
discussed in Chapter 4, Andersen and Klein (1996) show that the log-
transformed confidence interval for S(¢ | Z,) seems to work best, and
the arcsine-square-root confidence interval is a close second. The
routine use of the linear confidence interval is not recommended.

. Based on an extensive Monte Carlo study by Andersen and Klein

(1996), it can be shown that the estimators S, and S; have the small-
est bias and are recommended. The estimator §;, available in SAS,
seems to perform quite poorly for continuous and mixed, continuous
covariate models.

In section 1.10, times to death or relapse (in days) are given for 23 non-
Hodgkin’s lymphoma (NHL) patients, 11 receiving an allogenic (Allo)
transplant from an HLA-matched sibling donor and 12 patients receiving

an

autologous (Auto) transplant. Also, data on 20 Hodgkin’s lymphoma

(HOD) patients, 5 receiving an allogenic (Allo) transplant from an HLA-
matched sibling donor and 15 patients receiving an autologous (Auto)
transplant is given.

(@

(b)

©

Treating NHL Allo as the baseline hazard function, state the appro-
priate coding which would allow the investigator to test for any
difference in survival functions for the four groups, treating them
as four independent groups.

Treating NHL Allo as the baseline hazard function, state the ap-
propriate coding which would allow the investigator to test for an
interaction between type of transplant and disease type using main
effects and interaction terms.

Suppose that we have the following model for the hazard rates in
the four groups:

h(t | NHL Allo) = hy(t)

h(t | HOD Allo) = hy(Hexp(2)
h(t | NHL Auto) = hy(Hexp(1.5)
h(t | HOD Auto) = hy(Dexp(.5)

What are the risk coefficients, B;, i = 1, 2,3, for the interaction
model in part b?

In section 1.6 a study is described which evaluates a protocol change in

disinfectant practices in a large midwestern university medical center.

Of

primary interest in the study is a comparison of two methods of
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body cleansing. The first method, used exclusively from January 1983
to June 1984, consisted of a routine bathing care method (initial sur-
face decontamination with 10% povidone-iodine followed with regular
bathing with Dial soap). From June 1984 to the end of the study pe-
riod in December 1985, body cleansing was initially performed using 4%
chlorhexidine gluconate. Eighty-four patients were in the group who re-
ceived the new bathing solution, chlorhexidine, and 70 patients served
as the control group who received routine bathing care, povidone-
iodine. Included in the data set is a covariate that measures the total
surface area burned. The data is reported on our web site.

State the appropriate coding which would allow the investigator to
test for:

(a) any difference in survival functions for the two groups.

(b) any difference in survival functions for the two groups adjusting for
total area burned.

In section 1.11, a study was conducted on the effects of ploidy on the
prognosis of patients with cancer of the tongue. Tissue samples were
examined to determine if the tumor had a aneuploid or diploid DNA
profile. Times to death for these two groups of patients are recorded
in Table 1.6. To analyze this data create a single indicator variable, 7,
which reflects the type of tumor.

(a) Find the p-value of a test of the hypothesis of no effect of ploidy on
survival using the score test and the Breslow method of handling
ties.

(b) Estimate B and its standard error using the Breslow method of
handling ties. Find a 95% confidence interval for the relative risk of
death of an individual with an aneuploid tumor as compared to an
individual with a diploid tumor.

(¢) Repeat (a) using the likelihood test. Compare your answer to that
of part a.

(d) Repeat (a) using the Wald test. Compare your answer to those in
parts a and c.

In Exercise 7 of Chapter 7, three different treatments were administered
to rats who had F98 glioma cells implanted into their brains. The data
for the three groups of rats lists the death times (in days) in that exercise.
Create two dummy variables, Z; = 1 if animal is in the “radiation only”
group, 0 otherwise; Z, = 1 if animal is in the “radiation plus BPA”
group, 0 otherwise. Use the Breslow method of handling ties in the
problems below.

(a) Estimate B, and B, and their respective standard errors. Find a
95% confidence interval for the relative risk of death of an animal
radiated only compared to an untreated animal.
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(b) Test the global hypothesis of no effect of either radiation or radia-
tion plus BPA on survival. Perform the test using all the three tests
(Wald, likelihood ratio, and score test).

(¢) Test the hypothesis that the effect a radiated only animal has on
survival is the same as the effect of radiation plus BPA (i.e., Test
HO : Bl = Bz)

(d) Find an estimate and a 95% confidence interval for the relative risk
of death for a radiation plus BPA animal as compared to a radiated
only animal.

(e) Test the hypothesis that any radiation given as a treatment (either
radiation alone or with BPA) has a different effect on survival than
no radiation. Use the likelihood ratio test.

(f) Repeat part (e) using a Wald test.

Using the data set in Exercise 1, using the Breslow method of handling
ties,

(a) Analyze the data by performing a global test of no effect of group
as defined in Exercise 8.1(a) on survival. Construct an ANOVA table
to summarize estimates of the risk coefficients and the results of the
one degree of freedom tests for each covariate in the model.

(b) Repeat part (a) using the coding as described in Exercise 8.1(b).
Furthermore, test the hypothesis of disease type by transplant in-
teraction using a likelihood ratio rest based on this coding. Repeat
using the Wald test.

(¢) Find point estimates and 95% confidence intervals for the relative
risk of death for an NHL Auto transplant patient as compared to an
NHL Allo transplant patient.

(d) Find the p-value of a test of the hypothesis that the hazard rates
are the same for HOD Allo transplants and NHL Allo patients, using
the Wald test. Repeat a similar test for Auto patients.

(e) Test the hypothesis, using the Wald test, that the hazard rates for
Auto transplant and Allo transplant patients are the same for each
disease group against the alternative that the hazard rates for Auto
transplant and Allo transplant patients for at least one group are dif-
ferent using a two-degree of freedom test of H, : h(t | NHL Allo) =
h(t | NHL Auto) and H, : h(t | HOD Allo) = h(t | HOD Auto).

In section 1.13, data on the time to hospitalization of pneumonia in
young children was discussed. The data is presented on our web site.
In the sample there were 3,470 annual personal interviews. An investi-
gator is interested in assessing race, poverty status, and their interaction
on time to hospitalization of pneumonia. Use the discrete method for
handling ties to answer the following questions.

(a) Estimate the parameters of your model and their standard errors.
Construct and interpret an “ANOVA” table for this model.
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(b) Provide point estimates and 95% confidence intervals for the relative
risk of hospitalization for pneumonia for a person raised in poverty
relative to a person not raised in poverty for each race.

(o) Test that blacks raised in poverty have a different hospitalization
for pneumonia rate than whites not raised in poverty.

In section 1.6 a study is described which evaluates the relationship
of various covariates to staphylococcus infection in a large midwest-
ern university medical center (see Exercise 8.2). One of the covariates
recorded in the data set is the total surface area burned. Use Breslow’s
method for handing ties to answer the following questions.

(a) Find the optimal cutpoint to categorize patients into high- or low-
risk groups for staphylococcus infection based on their total surface
area burned for each disinfectant practice.

(b) Test the hypothesis that there is a difference in times to infection for
high- and low-risk groups using the cutpoints obtained in (a). Using
the cut points obtained in (a) find the relative risk of the high-risk
group compared to the low-risk group for each disinfectant practice.

(¢) Analyze the data using total surface area burned as a continuous
variable. Give the parameter estimate, standard error, and relative
risk for total surface area burned. Compare with the answer in (b).

In section 1.3, data gathered from a multicenter trial of patients in
three groups (ALL, AML low-risk, and AML high-risk) was followed
after transplantation until relapse, death, or end of study. One of the
covariates recorded in the data set is the waiting time to transplant (in
days). Use Breslow’s method for handling ties in the following.

(a) You are asked to categorize patients into high- or low-risk groups
for disease-free survival based on the waiting time to transplant
variable for the ALL group.

(b) Analyze the data using waiting time to transplant as a categorized
variable using the cut point obtained in (a). Give the parameter
estimate, standard error, and relative risk of the high-risk group
compared to the low-risk group for the ALL group.

(¢) Analyze the data using waiting time to transplant as a continuous
variable. Give the parameter estimate, standard error, and relative
risk for waiting time to transplant for the ALL group. Compare with
answer in (b).

Use the Breslow method for handling ties and the Wald test in the
following.

(a) Using the data set in section 1.6, test the hypothesis that the dis-
tributions of the times to staphylococcus infection are the same in
the two disinfectant groups.

(b) Test the hypothesis that the distributions of the times to staphylo-
coccus infection are the same in the two disinfectant groups adjust-
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ing for the total area burned, Z;. Compare your results to those in
part a.

() Also available in the data set is information on other factors that may
be associated with the timing of staphylococcus infection. Some of
these factors are gender, race, total surface area burned, and type
of burn (chemical, scald, electrical, flame). For each factor create
a set of fixed-time covariates. Test the hypothesis that the times
to staphylococcus infection are the same for the two disinfectant
groups using a model which adjusts for each of these factors.

(d) Since one is primarily interested in comparing the two bathing so-
lutions, interest will center upon building a model with the view
of testing that particular comparison adjusting for the other non-
controllable factors in part (¢). Using a forward selection approach,
build such a model using the p-value approach. Based on the final
model, test the hypothesis of primary interest.

In section 1.3, several event times are described for patients receiving
a bone marrow transplant for leukemia. Consider the time to devel-
opment of acute graft-versus-host disease (AGVHD). As a prophylactic
treatment, patients at two of the hospitals were given a treatment com-
bining methotrexate (MTX) with cyclosporine and possibly methylpred-
nisilone. Patients at the other hospitals were not given methotrexate but
rather a combination of cyclosporine and methylprednisilone. Of pri-
mary interest in studying AGVHD is a test of the effectiveness of the
MTX regime to prevent AGVHD. Use Breslow’s method for handling
ties to answer the following exercises.

(a) Using an appropriate Cox model test the hypothesis of no difference
in the rate of development of AGVHD between MTX and no MTX
patients. Find a point estimate and a 95% confidence interval for
the relative risk of AGVHD for patients on the MTX protocol as
compared to those not given MTX.

(b) Patients were also grouped into risk categories based on their sta-
tus at the time of transplantation. These categories were as follows:
acute lymphoblastic leukemia (ALL) with 38 patients and acute mye-
loctic leukemia (AML). The latter category was further subdivided
into low-risk—first remission (54 patients) and high-risk—second
remission or untreated first relapse or second or greater relapse or
never in remission (45 patients). Test the hypothesis of interest (no
effect of MTX on development of AGVHD) adjusting for the three
disease categories.

(¢) Test for the possibility of an interaction effect on AGVHD between
the disease categories and the use MTX.

(d) Using the factors of age, sex, CMV status, FAB class, waiting time
to transplant, and disease category as defined in Example 8.5, find
the best model to test the primary hypothesis of no MTX effect on
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the occurrence of AGVHD. Test the primary hypothesis and find an
estimate of the relative risk of occurrence of AGVHD for an MTX
patient as compared to a non-MTX patient.

In section 1.13, data gathered from annual personal interviews con-
ducted for the National Longitudinal Survey of Youth (NLSY) from 1979
through 1986 was presented. This data was used to study whether or
not the mother’s feeding choice protected the infant against hospitalized
pneumonia in the first year of life. Ages of young children at the time
they were hospitalized with pneumonia were recorded as well as the
observed ages of those infants that were not hospitalized with pneu-
monia during the study period. The data is available from our web site,
which can be reached via the authors’ pages at http://www.springer-
ny.com. Use the discrete method for handling ties in the following.

(a) Consider the dummy variable Z = 1 if infants were breast fed at
birth, 0 if infants were never breast fed, and test the hypothesis
Hy : B = 0, i.e., the survival functions for the two types of breast
feeding are equal, using the score, likelihood ratio, and Wald tests.
Find the estimate of B, b, the standard error of b, and the relative
risk using the Wald test.

(b) Also available in the data set is information on other factors that may
be associated with the timing of hospitalized pneumonia. These
factors are age of the mother at the infant’s birth, rural-urban en-
vironment of the mother, use of alcohol by the mother (no drinks,
less than one drink, 1-2 drinks, 3—4 drinks, or more than 4 drinks
per month), mother’s cigarette use (none, less than 1 pack/day, 1 or
more pack/day), region of country (northeast, north central, south,
or west), birthweight of infant (less the 5.5 Ibs or 5.5 Ibs or more),
poverty status of mother (yes/no), race of mother (white, black,
or other), or number of siblings of infant. For each factor create a
set of fixed-time covariates. Test the hypothesis that the times to
hospitalized pneumonia are the same for the two feeding groups
adjusting for each of these factors in a separate model using the
Wald test.

(¢) Since one is primarily interested in comparing the two types of
breast feeding, interest will center upon building a model with the
view of testing the particular comparison of interest adjusting for
the other noncontrollable fixed covariates in part b. Build such a
model using the AIC approach and the Wald test.

(d) Summarize your findings from this data set.

A major problem in certain sub-populations is the occurrence of sexu-
ally transmitted diseases (STD). Even if one ignores the lethal effects of
the acquired immune deficiency syndrome, other STD’s still have a sig-
nificant impact on the morbidity of the community. Two of these STD’s
are the focus of this investigation—gonorrhea and chlamydia. Both of
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these diseases can be prevented and effectively treated. The purpose
of the study described in section 1.12 is to identify those factors which
are related to time until reinfection by either gonorrhea or chlamydia
given a patient with an initial infection of gonorrhea or chlamydia. The
data for this study is available from our web site.

Possible factors related to reinfection are the individual’s race
(black/white), marital status (divorced/separated, married, single), age
at time of initial infection, years of schooling, initial infection type (gon-
orrhea, chlamydia, both), number of partners within the last 30 days,
oral sex within the last year, rectal sex within the past year, presence of
symptoms (abdominal pain, discharge, dysuria, itch, lesion, rash, lymph
node involvement), and condom use. If the factors that are related to a
greater risk of reinfection can be identified, then interventions could be
targeted to those individuals who are at greatest risk for reinfection. Use
regression techniques to find those factors which are most predictive
of the distribution of the time until reinfection from this list of fixed
explanatory factors with no particular prior hypothesis in mind. Build
such a model using the p-value approach. Use the Breslow method for
handling ties and the Wald test in the model building.

Find 95% confidence intervals for the survival functions for the two
bathing solutions at 20 days for a patient with 25% of total surface area
of body burned, using data in Section 1.6.

(a) Estimate the survival functions of the time to AGVHD for the MTX
and no MTX treatment groups discussed in Exercise 8.10, adjusted
for disease category. Provide a separate estimate for each disease
group.

(b) Find 95% confidence intervals for the survival functions for the two
patient treatment groups at 80 days for AML high-risk patients.
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11.1

11.2

11.3

where Z, (7)) is the vector Z(#) defined by (11.4.3), with the jth
observation omitted. Simplifying this expression yields

(b —b,) =1 (BN8,Z — Z(T)I}
—3[Z, — Z, (Tl explb'Z (DI (T;) — H,(T;,- ),

which is approximately equal to the standardized score residual A.

The approximation is based on an assumption that deletion of the
jth observation does not change the value of I"'(B,) and that Z,
is close to Z. Storer and Crowley (1985) give an alternate approx-
imation based on the one-step application of the Newton-Raphson
approximation to the estimate of B which attempts to remedy the
first problem. In most cases, these approximations are very close to
the score residuals suggested here.

In Example 8.2, a proportional hazards model was fit to the data on
the death times of 90 males diagnosed with cancer of the larynx (see
section 1.8). A model with three covariates for stage of disease was
considered.

(a) Determine if adding the patient’s age into the model is appropriate
using a martingale residual plot based on a Cox model adjusted for
disease stage. If age should not enter the model as a linear term
suggest a functional form for age.

(b) Repeat part a for the covariate year of transplant.

(o) Fit a model with the factor stage of disease and a linear term for
age. Perform a general examination of this model using a Cox—Snell
residual.

In section 1.14 a study of the times to weaning of breast-fed new-
borns was presented. This data is available on our web site. Categorical
variables which could explain the difference in weaning times are the
mother’s race (white, black, other), smoking status, and an indicator of
whether the mother was in poverty. Continuous variables which could
explain outcome are the mother’s age at the child’s birth, mother’s years
of education, and the child’s year of birth. Using a Cox model with
appropriate terms for the mother’s race, smoking status, and poverty
indicator, determine if each of the three continuous covariates would
enter the model as a linear function.

In section 1.8 data on the death times of patients diagnosed with cancer
of the larynx was presented (see Example 8.2 and Exercise 11.1). Using
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this data in a model which adjusts for age, examine the proportional
hazards assumption for the stage of disease by the following graphical
methods.

(a) A plot of the logarithms of the cumulative baseline hazard rates for
each disease stage.

(b) A plot of the difference in the log cumulative hazard rates for the
disease stages.

(¢) An Andersen plot.
(d) A score residual plot.

In Exercise 1 of Chapter 8 a Cox model was fit to data on the survival
times of patients with an aneuploid or diploid DNA tumor profile.

(a) Check the proportional hazards assumption for this data by plotting
the logarithms of the cumulative baseline hazard rates for each
ploidy group.

(b) Check for proportional hazards by plotting the difference in the log
cumulative hazard rates for the two groups.

(¢) Check for proportional hazards by using an Andersen plot.
(d) Check for proportional hazards by using a score residual plot.

In Example 8.3 and its continuation in section 8.4 a proportional hazards
model was fit to the data on the time to death of 863 kidney transplant
patients. (The data is presented on our web site.) Covariates in the
model were gender, race, and a gender by race interaction.

(a) Check this data for possible outliers by making an appropriate plot
of the deviance residuals.

(b) For each of the three covariates in this model find the four most
influential observations on the estimates of the regression coeffi-
cients. Explain why these observations are so influential.

(a) For the data on survival times of patients with an aneuploid or
diploid DNA tumor profile in Exercise 4 determine which, if any,
observations are outliers by making an appropriate deviance resid-
ual plot.

(b) Find the three points that have the greatest influence on the estimate
of the regression effect by constructing a plot of the adjusted score
residuals. Explain why these three points are so influential in light
of your fitted regression model.
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Figure 12.9  Cox—Snell residuals to assess the fit of the log normal regression
model for the laryngeal cancer data set

and for B,
dlnL;
P
These residuals can be used, as in section 11.6, to examine the

influence of a given observation on the estimates. See Collett (1994)
for additional detail. These residuals are available in S-Plus.

= 8,2 = AZ;exp(BZDT7.

12.6 Exercises

12.1 In section 1.11, a study of the effects of ploidy on survival for patients
with cancer of the tongue was described. In the study patients were
classified as having either an aneuploid or diploid DNA profile. The
data is presented in Table 1.6.
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Figure 12.10 Deviance residuals from the log logistic regression model for
laryngeal cancer patients
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For both the aneuploid and diploid groups fit a Weibull model to
the data. Find the maximum likelihood estimates of A and «, and
their standard errors.

For both groups, test the hypothesis that the shape parameter, «, is
equal to 1 by both the Wald and likelihood ratio tests.

Find the maximum likelihood estimates of the median survival for
both groups. Use the delta method to find an estimate of the stan-
dard error of your estimates.

Fit a Weibull regression model to this data with a single covariate,
Z, that is equal to 1 if the patient had an aneuploid DNA profile
and 0 otherwise. Test the hypothesis of no effect of ploidy on
survival using the likelihood ratio test and the Wald test. Find a
point estimate and 95% confidence interval for the relative risk of
death for an aneuploid tumor as compared to a diploid tumor. Also
find a point estimate and a 95% confidence for the acceleration
factor. Provide an interpretation of this factor.
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12.2

12.3

In section 1.4 the times to first exit-site infection (in months) of patients
with renal insufficiency were reported. In the study 43 patients had a
surgically placed catheter (Group 1) and 76 patients had a percutaneous
placement of their catheter (Group 0).

(a) For both groups fit a Weibull model to the data. Find the maximum
likelihood estimates of A and «, and their standard errors.

(b) For both groups test the hypothesis that the shape parameter, «, is
equal to 1 using the likelihood ratio test and the Wald test.

(¢) Find the maximum likelihood estimates and 95% confidence inter-
vals for the two survival functions at 5 months after placement of
the catheter. Compare these estimates to those obtained using the
product-limit estimator.

(d) Fita Weibull regression model to this data with a single covariate, Z,
that indicates group membership. Test the hypothesis of no effect
of catheter placement on the time to exit site infection. Find point
estimates and 95% confidence intervals for the relative risk and the
acceleration factor for exit site infections. Provide an interpretation
of these quantities.

In section 1.10, times to death or relapse (in days) are given for 23 non-
Hodgkin’s lymphoma (NHL) patients, 11 receiving an allogeneic (Allo)
transplant from an HLA-matched sibling donor and 12 patients receiv-
ing an autologous (Auto) transplant. Also, data is given in Table 1.5
on 20 Hodgkin’s lymphoma (HOD) patients, 5 receiving an allogeneic
(Allo) transplant from an HLA-matched sibling donor and 15 patients
receiving an autologous (Auto) transplant. Because there is a potential
for different efficacy of the two types of transplants for the two types
of lymphoma, a model with a main effect for type of transplant, a main
effect for disease type and an interactive term is of interest (coding
similar to 8.1b).

(a) Using a Weibull regression model, analyze this data by performing
a likelihood ratio global test of no effect of transplant type and
disease state on survival. Construct an ANOVA table to summarize
estimates of the risk coefficients and the results of the one degree
of freedom tests for each covariate in the model.

(b) Test the hypothesis of no disease—transplant type interaction using
a likelihood ratio test.

(¢) Find point estimates and 95% confidence intervals for the relative
risk of death for an NHL Auto transplant patient as compared to an
NHL Allo transplant patient.

(d) Test the hypothesis that the death rates are the same for HOD Allo
transplants and NHL Allo patients. Repeat this test for Auto patients.

(e) Test the hypothesis that the death rates for Auto transplant and
Allo transplant patients are the same against the alternative they are
different for at least one disease group by a 2 degree of freedom test
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12.8
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of H, : b(t | NHL Allo) = bh(¢ | NHL Auto) and h(t | HOD Allo) =
h(t | HOD Auto).

(f) Compare your results to those found in Exercise 3 of Chapter 8 by
using the semiparametric proportional hazards model.

Repeat Exercise 2 using the log logistic model. In part b use the Wald
test and in part d provide point and interval estimates of the acceleration
factor and the relative odds. Compare your results to those found in
Exercise 2.

Repeat Exercise 1 using the log logistic model. In part b use the Wald
test and in part d provide point and interval estimates of the acceleration
factor and the relative odds. Compare your results to those found in
that exercise.

Repeat Exercise 3 using the log logistic model. Compare your results to
those found in that exercise. Estimate relative odds rather than relative
risks in part c.

Using the ploidy data in Exercise 1, estimate the parameters and the
variance-covariance matrix for the following models for each of the two
groups.

(a) A log normal model.
(b) A normal model.
(0) A generalized gamma model.

(d) Using the results of part ¢, test the hypothesis that § = 0. Interpret
your result in terms of model selection.

(e) Using the results of part ¢, test the hypothesis that § = 1. Interpret
your result in terms of model selection.

(f) Based on your results in this exercise and in Exercises 1 and 5,
which parametric model best fits the data for each of the two ploidy
groups?

Using the information in Exercise 2, determine the best fitting parametric
regression model to determine the effects of catheter placement on the
time to first exit site infection by fitting the exponential, log normal,
and generalized gamma models.

For both the aneuploid and diploid groups in Exercise 1, make an
appropriate hazard plot to determine if the following models fit the
data:

(a) exponential,
(b) Weibull,
(o) log normal, and

(d) log logistic.
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12.10

12.11

12.12

12.13

12.14

For both catheter placement groups in Exercise 2, make an appropriate
hazard plot to determine if the following models fit the data:

(a) exponential,
(b) Weibull,

(o) log normal, and
(d) log logistic.

Check the adequacy of the accelerated failure time model for describing
the effects of ploidy on survival in Exercise 1 by making a quantile-
quantile plot. Provide a crude estimate of the acceleration factor and
compare it to the estimate you found in Exercise 1.

Check the adequacy of the accelerated failure time model for describing
the effects of catheter placement on the time to first exit site infection in
Exercise 2 by making a quantile-quantile plot. Provide a crude estimate
of the acceleration factor and compare it to the estimate you found in
Exercise 2.

In Exercise 1, you fit a Weibull regression model to explain the effect
of ploidy on survival.

(a) Examine the fit of this model by making the appropriate plot of the
Cox—Snell residuals.

(b) Examine the fit of this model by making the appropriate plot of the
deviance residuals residuals.

(¢) Repeat a and b for the log logistic regression model.
In Exercise 3 a Weibull regression model was fit to the survival times
of patients given a bone marrow transplant. The model included a

covariate for type of transplant, type of disease as well as an interaction
term.

(a) Examine the fit of this model by making the appropriate plot of the
Cox—Snell residuals.

(b) Examine the fit of this model by making the appropriate plot of the
deviance residuals residuals.

(¢) Repeat a and b for the log logistic regression model.



