A Semiparametric Bayesian Model for Comparing DNA Copy Numbers

Luis E. Nieto-Barajas

Department of Statistics, ITAM, Mexico

ISBA 2014 World Meeting

Cancún, Mexico, July 14-18, 2014

(joint with Y Ji & V.Baladandayuthapani)
There has been increasing interest in constructing the genomic architecture of diseases, e.g. breast cancer.
Objectives

- There has been increasing interest in constructing the genomic architecture of diseases, e.g. breast cancer
- Genomic architecture based on DNA copy number alterations
Objectives

- There has been increasing interest in constructing the genomic architecture of diseases, e.g. breast cancer
- Genomic architecture based on DNA copy number alterations
- CNA = variations (from two) in the copy number of DNA
Objectives

- There has been increasing interest in constructing the genomic architecture of diseases, e.g. breast cancer.
- Genomic architecture based on DNA copy number alterations
- CNA = variations (from two) in the copy number of DNA
- **Aim:** characterize different subtypes of breast cancer by examining the whole-genome copy number profiles based on multiple samples.
Objectives

- There has been increasing interest in constructing the genomic architecture of diseases, e.g. breast cancer
- Genomic architecture based on DNA copy number alterations
- CNA = variations (from two) in the copy number of DNA
- **Aim**: characterize different subtypes of breast cancer by examining the whole-genome copy number profiles based on multiple samples
 - Identifying genome aberrations for samples of the same disease subtype
Objectives

- There has been increasing interest in constructing the genomic architecture of diseases, e.g. breast cancer
- Genomic architecture based on DNA copy number alterations
- CNA = variations (from two) in the copy number of DNA
- **Aim:** characterize different subtypes of breast cancer by examining the whole-genome copy number profiles based on multiple samples
 - Identifying genome aberrations for samples of the same disease subtype
 - Detecting differences across disease subtypes
Example

Figure: Simulated genome profile.

Luis E. Nieto-Barajas
Comparing DNA copy numbers
Literature review

Some current approaches to CNA detection are:

- Olshen et al. (2004): Circular binary segmentation (most widely used method)
Literature review

Some current approaches to CNA detection are:

- Olshen et al. (2004): Circular binary segmentation (most widely used method)
- Guha et al. (2008): Bayesian hidden Markov model
Literature review

Some current approaches to CNA detection are:

- Olshen et al. (2004): Circular binary segmentation (most widely used method)
- Guha et al. (2008): Bayesian hidden Markov model
- Shah et al. (2007): Hierarchical hidden Markov models for recurrent CNA
Some current approaches to CNA detection are:

- Olshen et al. (2004): Circular binary segmentation (most widely used method)
- Guha et al. (2008): Bayesian hidden Markov model
- Shah et al. (2007): Hierarchical hidden Markov models for recurrent CNA
- Baladandayuthapani et al. (2010): Hierarchical Bayesian random segmentation approach for multiple samples
Some current approaches to CNA detection are:

- Olshen et al. (2004): Circular binary segmentation (most widely used method)
- Guha et al. (2008): Bayesian hidden Markov model
- Shah et al. (2007): Hierarchical hidden Markov models for recurrent CNA
- Baladandayuthapani et al. (2010): Hierarchical Bayesian random segmentation approach for multiple samples
- Yau et al. (2011): mixture model that combines a hidden Markov model for the locations (states), with a Dirichlet process prior for the scales
Definitions

Let $\mathcal{A} = \{t_1, t_2, \ldots, t_n\}$ be the index of probes. For each array j, we assume that there are n_j probes, which are a subset of \mathcal{A}.

Luis E. Nieto-Barajas
Comparing DNA copy numbers
Let $\mathcal{A} = \{t_1, t_2, \ldots, t_n\}$ be the index of probes. For each array j, we assume that there are n_j probes, which are a subset of \mathcal{A}.

For each sample $j = 1, \ldots, J$ we have a partition $\{\Delta_j^i\}_{i=1}^{L_j}$ of \mathcal{A} with $\Delta_j^i = [c_j^i, c_j^{i+1})$.

Let g_j indicate the disease subtype for sample j. Say $g_j \in \{1, 2\}$.

Luis E. Nieto-Barajas
Comparing DNA copy numbers
Let $\mathcal{A} = \{t_1, t_2, \ldots, t_n\}$ be the index of probes. For each array j, we assume that there are n_j probes, which are a subset of \mathcal{A}.

For each sample $j = 1, \ldots, J$ we have a partition $\{\Delta^j_l\}_{l=1}^{L_j}$ of \mathcal{A} with $\Delta^j_l = [c^j_l, c^j_{l+1})$.

We define a common partition $\{\Omega_k\}_{k=1}^{K}$ for all arrays as the union of all partition segments over $j = 1, \ldots, J$. That is, $\Omega_k = [c_k, c_{k+1})$ with $\{t_1 = c_1 < c_2 \cdots < c_K+1 = t_n\} = \bigcup_j \{t_1 = c^j_1 < c^j_2 \cdots < c^j_{L_j+1} = t_n\}$.

Let g_j indicate the disease subtype for sample j. Say $g_j \in \{1, 2\}$.

Luis E. Nieto-Barajas
Comparing DNA copy numbers
Definitions

- Let $\mathcal{A} = \{t_1, t_2, \ldots, t_n\}$ be the index of probes. For each array j, we assume that there are n_j probes, which are a subset of \mathcal{A}.
- For each sample $j = 1, \ldots, J$ we have a partition $\{\Delta^j_i\}_{i=1}^{L_j}$ of \mathcal{A} with $\Delta^j_i = [c^j_i, c^j_{i+1})$.
- We define a common partition $\{\Omega_k\}_{k=1}^K$ for all arrays as the union of all partition segments over $j = 1, \ldots, J$. That is, $\Omega_k = [c_k, c_{k+1})$ with $\{t_1 = c_1 < c_2 \cdots < c_{K+1} = t_n\} = \bigcup_j \{t_1 = c^j_1 < c^j_2 \cdots < c^j_{L_j+1} = t_n\}$.
- Let g_j indicate the disease subtype for sample j. Say $g_j \in \{1, 2\}$.

Luis E. Nieto-Barajas
Comparing DNA copy numbers
Semiparametric model

Let Y_{ij} be the log$_2$ ratio of probe t_i at sample j.
Semiparametric model

Let Y_{ij} be the log$_2$ ratio of probe t_i at sample j.

Sampling model: For $i = 1, \ldots, n_j$ and $j = 1, \ldots, J$

$$Y_{ij} = \sum_{k=1}^{K} \mu_{k,g_j} I(i \in \Omega_k) + \sum_{l=1}^{L_j} m_{lj} I(i \in \Delta_{lj}) + \epsilon_{ij}, \quad (1)$$

with $\epsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2_\epsilon)$
Let Y_{ij} be the log$_2$ ratio of probe t_i at sample j.

Sampling model: For $i = 1, \ldots, n_j$ and $j = 1, \ldots, J$

$$Y_{ij} = \sum_{k=1}^{K} \mu_{k,g_j} I(i \in \Omega_k) + \sum_{l=1}^{L_j} m_{lj} I(i \in \Delta_{lj}) + \epsilon_{ij}, \quad (1)$$

with $\epsilon_{ij} \overset{iid}{\sim} \mathcal{N}(0, \sigma^2_\epsilon)$

That is, Y_{ij} arises from the sum of a population mean μ_{k,g_j}, a sample-specific mean m_{lj}, plus a measurement error ϵ_{ij}.
Semiparametric model

Priors:

- Denote by \(\mu_k = (\mu_{k1}, \mu_{k2}) \) the vector of population copy number levels for subtypes 1 and 2.

\[
\mu_k \mid G \sim G, \quad \text{for } k = 1, \ldots, K
\]

\[
G = (1 - \pi)G_0 + \pi G_1
\]

\[
G_r \mid a_r \sim \text{DP}(a_r, F_r), \ r = 0, 1,
\]
Semiparametric model

Priors:

- Denote by \(\mu_k = (\mu_{k1}, \mu_{k2}) \) the vector of population copy number levels for subtypes 1 and 2

\[
\mu_k \mid G \overset{\text{ind}}{\sim} G, \quad \text{for } k = 1, \ldots, K
\]

\[
G = (1 - \pi) G_0 + \pi G_1
\]

\[
G_r \mid a_r \overset{\text{ind}}{\sim} \text{DP}(a_r, F_r), \quad r = 0, 1,
\]

- We define a spike and slab prior in two dimensions

\[
F_0(\mu_k) = N(\mu_{k1} \mid 0, \lambda_0^2) I(\mu_{k1} = \mu_{k2}) \quad \text{and}
\]

\[
F_1(\mu_k) = N_2(\mu_k \mid 0, \Lambda_1)
\]
Semiparametric model

Priors:

- Denote by \(\mu_k = (\mu_{k1}, \mu_{k2}) \) the vector of population copy number levels for subtypes 1 and 2

\[
\mu_k \mid G \overset{\text{ind}}{\sim} G, \quad \text{for } k = 1, \ldots, K
\]

\[
G = (1 - \pi)G_0 + \pi G_1
\]

\[
G_r \mid a_r \overset{\text{ind}}{\sim} \text{DP}(a_r, F_r), \quad r = 0, 1,
\]

- We define a spike and slab prior in two dimensions

\[
F_0(\mu_k) = N(\mu_{k1} \mid 0, \lambda_0^2)I(\mu_{k1} = \mu_{k2}) \quad \text{and}
\]

\[
F_1(\mu_k) = N_2(\mu_k \mid 0, \Lambda_1)
\]

- Introducing a latent indicator \(z_k = I(\mu_{k1} \neq \mu_{k2}) \)

\[
\mu_k \mid z_k, G_0, G_1 \overset{\text{ind}}{\sim} G_{z_k}, \quad z_k \overset{\text{ind}}{\sim} \text{Ber}(\pi), \quad G_r \overset{\text{ind}}{\sim} \text{DP}(a_r, F_r)
\]
Semiparametric model

Priors:
- For the random effects

\[m_{kj}^{\text{ind}} \sim N(0, \tau_j^2), \quad \text{with} \quad \tau_j^2 \overset{iid}{\sim} \text{IGa}(\alpha_T, \beta_T). \]
Semiparametric model

Priors:

- For the random effects
 \[m_{kj} \overset{\text{ind}}{\sim} \mathcal{N}(0, \tau_j^2), \quad \text{with} \quad \tau_j^2 \overset{iid}{\sim} \text{IGa}(\alpha_\tau, \beta_\tau). \]

- For the sample variance:
 \[\sigma^2_\epsilon \sim \text{IGa}(\alpha_\sigma, \beta_\sigma). \]
Semiparametric model

Priors:

- For the random effects

 \[m_{kj} \overset{\text{ind}}{\sim} N(0, \tau_j^2), \quad \text{with} \quad \tau_j^2 \overset{iid}{\sim} IGa(\alpha_T, \beta_T). \]

- For the sample variance:

 \[\sigma^2_\epsilon \sim IGa(\alpha_\sigma, \beta_\sigma). \]

- For the precision parameter of the Dirichlet processes:

 \[a_r \overset{iid}{\sim} Ga(a_\alpha, b_\alpha), \quad \text{for} \ r = 0, 1. \]
Semiparametric model

Posterials:

- We update jointly \((\mu_k, z_k)\)
Semiparametric model

Posteriors:

- We update jointly (μ_k, z_k)
- Posterior conditional of m_{lj0}, σ^2_e and τ^2_j are conditionally conjugate
Semiparametric model

Posterior:
- We update jointly \((\mu_k, z_k) \)
- Posterior conditional of \(m_{lj0}, \sigma^2_\epsilon \) and \(\tau^2_j \) are conditionally conjugate
- Posterior conditional of \(a_r \) is not conditionally conjugate and requires a MH step
Semiparametric model

Posterior:
- We update jointly \((\mu_k, z_k)\)
- Posterior conditional of \(m_{lj0}, \sigma^2_\epsilon\) and \(\tau_j^2\) are conditionally conjugate
- Posterior conditional of \(a_r\) is not conditionally conjugate and requires a MH step
- Also implement a re-sampling step for \(\mu_k\)
Calling aberrations

- Key parameters of interest are: \(\mu_k = (\mu_{k1}, \mu_{k2}) \) and \(z_k \), and \(m_{lj} \)
Calling aberrations

- Key parameters of interest are: $\mu_k = (\mu_{k1}, \mu_{k2})$ and z_k, and m_{lj}
- Calling CNA across samples: compute

 $P(|\mu_{k1}| \geq c_1 | \text{data})$ and $P(|\mu_{k2}| \geq c_2 | \text{data})$,

 for values of c_1 and c_2 to achieve a certain FDR
Calling aberrations

- Key parameters of interest are: $\mu_k = (\mu_{k1}, \mu_{k2})$ and z_k, and m_{lj}
- Calling CNA across samples: compute

$$P(|\mu_{k1}| \geq c_1 \mid \text{data}) \text{ and } P(|\mu_{k2}| \geq c_2 \mid \text{data}),$$

for values of c_1 and c_2 to achieve a certain FDR
- Calling differential CNA across disease subtypes: compute

$$P(\{|\mu_{k1}| \geq c_1 \text{ or } |\mu_{k2}| \geq c_2\} \& \{z_k = 1\} \mid \text{data}),$$
Key parameters of interest are: $\mu_k = (\mu_{k1}, \mu_{k2})$ and z_k, and m_{lj}

- **Calling CNA across samples**: compute
 \[
 P(|\mu_{k1}| \geq c_1 \mid \text{data}) \quad \text{and} \quad P(|\mu_{k2}| \geq c_2 \mid \text{data}),
 \]
 for values of c_1 and c_2 to achieve a certain FDR

- **Calling differential CNA across disease subtypes**: compute
 \[
 P(\{|\mu_{k1}| \geq c_1 \text{ or } |\mu_{k2}| \geq c_2\} \& \{z_k = 1\} \mid \text{data}),
 \]

- **Sample specific**: segment-specific mean copy number is
 \[
 (\mu_{k,g_j} + m_{l,j})
 \]
Simulated Data

- $n = 1,000$ probes, with locations from 1 to n
Simulated Data

- $n = 1,000$ probes, with locations from 1 to n
- For group $g = 1$, we took 4 regions of CNA around \{200, 400, 600, 800\}, alternating gain and loss
Simulated Data

- \(n = 1,000 \) probes, with locations from 1 to \(n \)
- For group \(g = 1 \), we took 4 regions of CNA around \{200, 400, 600, 800\}, alternating gain and loss
- Group \(g = 2 \) contains only two regions of CNA at \{600, 800\}, (gain and loss)
Simulated Data

- \(n = 1,000 \) probes, with locations from 1 to \(n \)
- For group \(g = 1 \), we took 4 regions of CNA around \{200, 400, 600, 800\}, alternating gain and loss
- Group \(g = 2 \) contains only two regions of CNA at \{600, 800\}, (gain and loss)
- Aberration widths \(\sim \text{Ga}(2.5, 0.05) \) (accommodates large and short segments)
Simulated Data

- $n = 1,000$ probes, with locations from 1 to n
- For group $g = 1$, we took 4 regions of CNA around \{200, 400, 600, 800\}, alternating gain and loss
- Group $g = 2$ contains only two regions of CNA at \{600, 800\}, (gain and loss)
- Aberration widths $\sim \text{Ga}(2.5, 0.05)$ (accommodates large and short segments)
- We took level zero for the neutral zones and a positive / negative random value $\text{Un}(0.1, 0.25)$ for the gain/loss zones
Simulated Data

- $n = 1,000$ probes, with locations from 1 to n
- For group $g = 1$, we took 4 regions of CNA around $\{200, 400, 600, 800\}$, alternating gain and loss
- Group $g = 2$ contains only two regions of CNA at $\{600, 800\}$, (gain and loss)
- Aberration widths $\sim \text{Ga}(2.5, 0.05)$ (accommodates large and short segments)
- We took level zero for the neutral zones and a positive / negative random value $\text{Un}(0.1, 0.25)$ for the gain/loss zones
- We added random errors $\mathcal{N}(0, \sigma^2)$ to the mean profiles, with $\sigma^2 \in \{0.1, 0.3\}$ to show low and high levels of noise in the log2 ratios
Simulated Data

- We generated 100 profiles
Simulated Data

- We generated 100 profiles
- To test our model under different conditions, only a percentage $\omega\times 100\%$ of the 100 profiles presented the shared aberrations
Simulated Data

- We generated 100 profiles.
- To test our model under different conditions, only a percentage $\omega 100\%$ of the 100 profiles presented the shared aberrations.
- The remainder $(1 - \omega)100\%$ were all neutral, showing only white noise around zero.
Simulated Data

- We generated 100 profiles
- To test our model under different conditions, only a percentage $\omega \times 100\%$ of the 100 profiles presented the shared aberrations
- The remainder $(1 - \omega) \times 100\%$ were all neutral, showing only white noise around zero.
- We took three prevalence levels, $\omega \in \{1, 0.6, 0.3\}$
Simulated Data

- We generated 100 profiles
- To test our model under different conditions, only a percentage $\omega 100\%$ of the 100 profiles presented the shared aberrations
- The remainder $(1 - \omega)100\%$ were all neutral, showing only white noise around zero.
- We took three prevalence levels, $\omega \in \{1, 0.6, 0.3\}$
- Therefore, we had a total of 6 different scenarios: (3 prevalence levels \times 2 noise levels).
Simulated Data

Figure: Simulated genome profile.
Simulated Data

- S-s partitions \(\{\Delta_j^i\} \) were obtained from CBS with \(\alpha = 0.01 \)
Simulated Data

- S-s partitions \(\{\Delta^j_i\} \) were obtained from CBS with \(\alpha = 0.01 \)
- Prior specifications: \(\lambda_0^2 = \lambda_1^2 = \lambda_2^2 = 100, (\alpha_a, \beta_a) = (1, 1), \sigma_\epsilon^2, (\alpha_\sigma, \beta_\sigma) = (2, 1) \)
Simulated Data

- S-s partitions \(\{\Delta^j_i\} \) were obtained from CBS with \(\alpha = 0.01 \)
- Prior specifications: \(\lambda_0^2 = \lambda_1^2 = \lambda_2^2 = 100 \), \((\alpha_a, \beta_a) = (1, 1) \), \(\sigma_\varepsilon^2 \), \((\alpha_\sigma, \beta_\sigma) = (2, 1) \)
- The crucial parameter \(\tau_j^2 \) (variance of the s-s r.e.)
Simulated Data

- S-s partitions $\{\Delta^j_i\}$ were obtained from CBS with $\alpha = 0.01$
- Prior specifications: $\lambda_0^2 = \lambda_1^2 = \lambda_2^2 = 100$, $(\alpha_a, \beta_a) = (1, 1)$, σ_ϵ^2, $(\alpha_\sigma, \beta_\sigma) = (2, 1)$
- The crucial parameter τ^2_j (variance of the s-s r.e.)
 - Large $\tau^2_j \Rightarrow$ s-s effects capture most of the variability of the data, leaving little for the population mean
Simulated Data

- S-s partitions \(\{ \Delta^j_l \} \) were obtained from CBS with \(\alpha = 0.01 \)
- Prior specifications: \(\lambda_0^2 = \lambda_1^2 = \lambda_2^2 = 100 \), \((\alpha_a, \beta_a) = (1, 1) \), \(\sigma^2_\epsilon \), \((\alpha_\sigma, \beta_\sigma) = (2, 1) \)
- The crucial parameter \(\tau_j^2 \) (variance of the s-s r.e.)
 - Large \(\tau_j^2 \) ⇒ s-s effects capture most of the variability of the data, leaving little for the population mean
 - Small \(\tau_j^2 \) ⇒ variability of the data is shared between the population effects and the s-s effects
Simulated Data

- S-s partitions $\{\Delta^j_i\}$ were obtained from CBS with $\alpha = 0.01$
- Prior specifications: $\lambda^2_0 = \lambda^2_1 = \lambda^2_2 = 100$, $(\alpha_a, \beta_a) = (1, 1)$, σ^2_ϵ, $(\alpha_\sigma, \beta_\sigma) = (2, 1)$
- The crucial parameter τ^2_j (variance of the s-s r.e.)
 - Large $\tau^2_j \Rightarrow$ s-s effects capture most of the variability of the data, leaving little for the population mean
 - Small $\tau^2_j \Rightarrow$ variability of the data is shared between the population effects and the s-s effects
- We took $(\alpha_\tau, \beta_\tau) = (3, 0.01)$
Simulated Data

- S-s partitions $\{\Delta^j_i\}$ were obtained from CBS with $\alpha = 0.01$
- Prior specifications: $\lambda_0^2 = \lambda_1^2 = \lambda_2^2 = 100$, $(\alpha_a, \beta_a) = (1, 1)$, σ^2_e, $(\alpha_\sigma, \beta_\sigma) = (2, 1)$
- The crucial parameter τ^2_j (variance of the s-s r.e.)
 - Large τ^2_j \Rightarrow s-s effects capture most of the variability of the data, leaving little for the population mean
 - Small τ^2_j \Rightarrow variability of the data is shared between the population effects and the s-s effects
- We took $(\alpha_\tau, \beta_\tau) = (3, 0.01)$
- Ran Gibbs sampler for 10,000 iterations with a burn-in of 1,000, keeping every other draw
Simulated Data

- S-s partitions \(\{ \Delta_j \} \) were obtained from CBS with \(\alpha = 0.01 \)
- Prior specifications: \(\lambda_0^2 = \lambda_1^2 = \lambda_2^2 = 100, \ (\alpha_a, \beta_a) = (1, 1) \), \(\sigma^2, \ (\alpha_\sigma, \beta_\sigma) = (2, 1) \)
- The crucial parameter \(\tau^2_j \) (variance of the s-s r.e.)
 - Large \(\tau^2_j \) ⇒ s-s effects capture most of the variability of the data, leaving little for the population mean
 - Small \(\tau^2_j \) ⇒ variability of the data is shared between the population effects and the s-s effects
- We took \((\alpha_\tau, \beta_\tau) = (3, 0.01) \)
- Ran Gibbs sampler for 10,000 iterations with a burn-in of 1,000, keeping every other draw
- We call differential CNAs with a FDR = 5% and thresholds \(c_1 = c_2 = c \) with \(c = 0.10, 0.05, 0.03 \) for the 100%, 60% and 30% prevalence levels
Simulated Data

Chromosome 11

Chromosome 14

Chromosome 13

Chromosome 15

Chromosome 12

Chromosome 16

Comparing DNA copy numbers

Luis E. Nieto-Barajas
Breast Cancer Data

- UTMDACC conducted arrayCGH experiments using samples from 122 patients
Breast Cancer Data

- UTMDACC conducted arrayCGH experiments using samples from 122 patients
- Tumor samples of 122 patients are: 60 - ER+, 11 - PR+, and 51 - TN
Breast Cancer Data

- UTMDACC conducted arrayCGH experiments using samples from 122 patients
- Tumor samples of 122 patients are: 60 - ER+, 11 - PR+, and 51 - TN
- Concentrated on comparing ER+ and TN (111 samples in total)
Breast Cancer Data

- UTMDACC conducted arrayCGH experiments using samples from 122 patients
- Tumor samples of 122 patientes are: 60 - ER+, 11 - PR+, and 51 - TN
- Concentrated on comparing ER+ and TN (111 samples in total)
- We split the data on chromosomes
UTMDACC conducted arrayCGH experiments using samples from 122 patients.

- Tumor samples of 122 patients are: 60 - ER+, 11 - PR+, and 51 - TN.
- Concentrated on comparing ER+ and TN (111 samples in total).
- We split the data on chromosomes.
- Sample-specific partitions \(\{ \Delta_j \} \) were obtained from CBS with \(\alpha = 0.01 \).
Breast Cancer Data

- UTMDACC conducted arrayCGH experiments using samples from 122 patients.
- Tumor samples of 122 patients are: 60 - ER+, 11 - PR+, and 51 - TN.
- Concentrated on comparing ER+ and TN (111 samples in total).
- We split the data on chromosomes.
- Sample-specific partitions \(\{ \Delta_j \} \) were obtained from CBS with \(\alpha = 0.01 \).
- Same prior specifications as in simulated data.
Breast Cancer Data

- UTMDACC conducted arrayCGH experiments using samples from 122 patients.
- Tumor samples of 122 patients are: 60 - ER+, 11 - PR+, and 51 - TN.
- Concentrated on comparing ER+ and TN (111 samples in total).
- We split the data on chromosomes.
- Sample-specific partitions \(\{\Delta^j_i\} \) were obtained from CBS with \(\alpha = 0.01 \).
- Same prior specifications as in simulated data.
- We call differential CNA with a FDR = 5% with thresholds \(c_1 = c_2 = 0.2 \) for all chromosomes.
Breast Cancer Data

- We found CNA differences between the two cancer subtypes in 16 of the 23 chromosomes.
Breast Cancer Data

- We found CNA differences between the two cancer subtypes in 16 of the 23 chromosomes.
- Predominantly in chromosomes 3 –7, 9 – 12, 14 – 19, and 23.
Breast Cancer Data

- We found CNA differences between the two cancer subtypes in 16 of the 23 chromosomes.
- Predominantly in chromosomes 3 – 7, 9 – 12, 14 – 19, and 23.
- Chromosome 5 is confirmatory.
Breast Cancer Data

- We found CNA differences between the two cancer subtypes in 16 of the 23 chromosomes
- Predominantly in chromosomes 3 –7, 9 – 12, 14 – 19, and 23
- Chromosome 5 is confirmatory
- Chromosome 15 is a new finding
Breast Cancer Data

Compared DNA copy numbers
Breast Cancer Data

Figure: Differential CNA probabilities for all chromosomes.

